Skip to main content

Search Results

Targeting Enhancer Dysfunction in Hematological Malignancy

Blood cancers such as leukemia, lymphoma and myeloma may be caused by abnormal regulation of genes that control normal cell growth and development. Genes that are normally active can be silenced and/or genes normally not present in a blood cell are abnormally activated. The result can be an uncontrolled signal for continued cell growth or survival. Our group studies the molecular basis of this gene deregulation using cells cultured in the laboratory, human specimens, and animal models.

Uncovering MGA-driven epigenetic reprogramming in Richter's syndrome

Richter’s syndrome (RS) is a critical complication of chronic lymphocytic leukemia. RS patients are refractory to most existing therapies and show a median survival of ~12 months. I aim to dissect the function of a frequently mutated gene in RS (i.e., MGA) through cutting-edge single-cell analyses of patient samples and mouse models. The objective of these studies is to understand transformation biology, unravel novel therapeutic vulnerabilities, and provide the basis for personalized therapy.

Investigating the role of preleukemia duration and clonal burden in progression to AML

The development of acute myeloid leukemia (AML) is preceded by a “preleukemic” phase in which mutated hematopoietic stem cells expand due to a fitness advantage. Our work uses prospective models and analysis of patient samples to study how the duration of preleukemia and how the preleukemic clonal burden affect progression to AML. Results of our studies will shed new light on AML pathogenesis and help guide clinical management of preleukemic conditions such as clonal hematopoiesis.

Targeting SF3B1 splicing factor mutant myeloid malignancies through dependency on GPATCH8

Mutations in RNA splicing factors, particularly those involving the core splicing factor SF3B1 are amongst the most common mutations found in myeloid neoplasms. We recently identified a cofactor protein known as GPATCH8 which is required for the aberrant function of mutant SF3B1. We now seek to understand and target the ways in which GPATCH8 and SF3B1 interact. In so doing we hope to develop new treatments for leukemias containing mutant splicing factors.

Metabolic Regulation of Leukemic Cell Fate

Cell-intrinsic metabolic processes are dysregulated in acute myeloid leukemia (AML) and can act to sustain an oncogenic state of differentiation arrest. Using AML cell lines and patient-derived material grown in sophisticated liquid culture medium that mimics human plasma, we will perform metabolically focused in vitro and in vivo CRISPR-Cas9 screens to reveal metabolic regulators of AML cell fate that can be exploited via dietary or pharmacologic intervention as a novel therapeutic strategy.

Deciphering the role of p53 signaling in NPM1-mutant AML

NPM1c and TP53 mutations are exclusive in acute myeloid leukemia (AML) despite both being commonly present in patients, suggesting a fitness disadvantage for cells with co-occurring mutations. However, the mechanisms underlying this exclusivity have not been explored. This project will utilize novel models to dissect the importance of TP53 signaling in NPM1c+ (pre)-leukemic stem cells. Generated results may highlight therapeutic opportunities for improved risk management of NPM1c+ AML patients.

Mechanisms of Clonal Evolution in the Transformation of MPN to sAML

This research will investigate blood stem cell mutations associated with progression of myeloproliferative neoplasm (MPN) to secondary acute myeloid leukemia (sAML). Our preliminary data suggest that pre-leukemic cells with particular mutations may have a selective advantage in a background of certain MPN subtypes. We will confirm this by utilizing mouse models and both MPN and sAML primary patient samples. Ultimately, we will examine and test inhibition of mechanisms which drive MPN to sAML.

Targeting splicing factor mutant myelodysplastic syndromes through GSK-3

Myelodysplasia (MDS) is a lethal stem cell disorder characterized by defective blood formation and progression to leukemia. MDS is frequently caused by mutations in splicing factors, but these mutations also create an Achille’s heel that can be targeted to kill MDS cells while sparing normal blood cells. We identified a group of clinically safe drugs that target this weakness and selectively kill MDS cells in vitro. We will test whether these drugs are effective in mouse models of MDS.

Novel immunotherapeutic strategies in infants with high risk AML

Treatment of AML in infants is especially challenging given unique genetic make-up of the disease as well as specific susceptibilities of the host. We will leverage the RNA Seq data from over 2000 patients to discover and validate novel targets (cell surface proteins), and in collaboration with Dr. Correnti (Protein Scientist) and Dr. Fry (CART development expert) generate and test novel antibodies, ADCs, BiTEs and CARTs directed against leukemia-specific targets in infants.

Role of the AML "Immunome" in response and failure of chimeric antigen receptor T cell therapy

Most patients with acute myeloid leukemia (AML) are not cured with chemotherapy alone, and most long-term survivors of AML have undergone an allogeneic stem cell transplant (also known as bone marrow transplant). The outlook is quite grim for patients whose AML relapses after transplant. We have developed a new type of treatment for AML called chimeric antigen receptor (CAR) T cells for these patients. The goal of this project is to investigate how to improve CAR T cells for AML.

Interrogating T-cell apoptotic priming to improve CAR-T persistence in treatment of lymphoid malignancies

CAR-T cells are made from a patient’s own immune cells, altered so that they specifically recognize and kill the patient’s cancer cells. They are effective in many but not all cases of B-acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL), among other blood cancers. In this proposal we seek to better understand ways to select T cells that will make better CAR-T cells as well as to treat CAR T cells them in ways to make them work better in the cancer patient.

A phase 1 study of DR-0201, a bispecific myeloid engager, in patients with B-NHL

In November 2022, LLS made an equity investment in Dren Bio to "Support Clinical Development of the DR-01 Program for Rare Leukemia & Lymphoma Indications Including Large Granular Lymphocyte Leukemia (LGLL) and Cytotoxic Lymphomas."

A phase 2 expansion study of ICT01, an anti-BTN3A monoclonal antibody, in combination with azacitidine and venetoclax in patients with AML

In June 2022, LLS made an equity investment in ImCheck Therapeutics to "Support Clinical Development of the ICT01 Program for Blood Cancer Indications." ImCheck Therapeutics is designing and developing a new generation of immunotherapeutic antibodies targeting butyrophilins, a novel super-family of immunomodulators.

Therapy Acceleration Program - Portfolio

Since 2017, three TAP-supported therapies have been approved by the U.S.

Developing Novel CAR-T Cell Therapy For Hematologic Malignancies

We observed that patients with many hematologic cancers expressed high levels of DKK1 and generated novel human DKK1-A2 CAR-T cells that can kill cancer cells from HLA-A2+ patients with myeloma, lymphoma, or leukemia. We also found that Th9-polarized T cells have enhanced antitumor effects in vivo. In this proposal, we will determine 1) whether and how Th9-polarized DKK1-A2 CAR-T cells are promising effector T cells for immunotherapy of human patients, and 2) whether Th9-polarized DKK1-A2 CAR-T cells are associated with reduced on- and off-target toxicities.

A phase 2 study of Bexmarilimab, an anti-Clever1 monoclonal antibody, in combination with azacitidine in patients with high-risk MDS

In June 2022, LLS made an equity investment in Faron Pharmaceuticals to "Support Clinical Development of the Bexmarilimab Program for Leukemia Indications." Faron is a clinical stage biopharmaceutical company developing novel treatments for medical conditions with significant unmet needs caused by dysfunction of our immune system. The Company currently has a pipeline based on the receptors involved in regulation of immune response in oncology, organ damage and bone marrow regeneration. 

The Immune Niche in the Development of Hematological Malignancies and Implications for Novel Therapy

Our SCOR Program, composed of four complementary Projects supported by three shared Cores, is designed to determine how the immune niche and factors in its composition and regulation affect the initiation and progression of hematopoietic malignancies. Using genetically engineered mouse models, cell cultures and patient samples, the power of multi-omics analyses will be brought to bear to identify common drivers and expose underlying mechanisms.

Novel CD7 CAR T-cells for refractory T-cell malignancies affecting pediatric and AYA patients

T-cell leukemias and lymphomas have devastating outcomes if they recur after or don’t respond to standard treatment, with the only hope of cure being bone marrow transplant (BMT). Unfortunately, many pediatric, adolescent and young adult (AYA) patients are unable to achieve clinical remission (and thus unable to proceed to BMT) with standard salvage therapies, which are often even more toxic than upfront therapies.

A phase 2 registration-directed clinical study of ziftomenib (KO-539), a menin inhibitor, in patients with NPM1-mutant relapsed or refractory AML

Starting in July 2010, LLS TAP supported a promising University of Michigan research project led by <a href="https://www.lls.org/award-recipient/jolanta-grembecka" target="_blank">Jolanta Grembecka, PhD</a>, to develop new treatments for patients with a rare and lethal subtype of leukemia. Through TAP, LLS engaged chemists to improve the properties that produced lead compounds that exhibited potent anti-leukemic activity.

Pharmacological strategies to enhance T- and NK-cell-based therapies in blood cancers

Although they represent a major therapeutic progress for blood cancers, CAR-T cells and other T-cell based therapies are subject to eventual development of resistance to many patients. Natural killer (NK) cell-based therapies are highly active against many types of blood cancer cells which are resistant to T cells, but in our CRISPR studies death receptor signaling defects emerge as a common downstream mechanism of resistance to both T- and NK-cell therapies.

A phase 2 study of RVU120, a novel CDK8 inhibitor, in genetically defined cohorts of patients with AML and high-risk MDS

In August 2017, LLS TAP partnered with Ryvu Therapeutics (formerly known as Selvita) to support "A Phase 1b Study of SEL120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome." Ryvu Therapeutics is a clinical-stage drug discovery and development company focusing on novel small molecule therapies that address emerging targets in oncology using a proprietary&nbsp;discovery engine platform.

A phase 2 study of RVU120, a novel CDK8 inhibitor, in combination with venetoclax in patients with AML

In August 2017, LLS TAP partnered with Ryvu Therapeutics (formerly known as Selvita) to support "A Phase 1b Study of SEL120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome." Ryvu Therapeutics is a clinical-stage drug discovery and development company focusing on novel small molecule therapies that address emerging targets in oncology using a proprietary&nbsp;discovery engine platform.

A phase 2 study of RVU120, a novel CDK8 inhibitor, in patients with low-risk MDS

In August 2017, LLS TAP partnered with Ryvu Therapeutics (formerly known as Selvita) to support "A Phase 1b Study of SEL120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome." Ryvu Therapeutics is a clinical-stage drug discovery and development company focusing on novel small molecule therapies that address emerging targets in oncology using a proprietary&nbsp;discovery engine platform.

A phase 2 study of RVU120, a novel CDK8 inhibitor, in patients with myelofibrosis

In August 2017, LLS TAP partnered with Ryvu Therapeutics (formerly known as Selvita) to support "A Phase 1b Study of SEL120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome." Ryvu Therapeutics is a clinical-stage drug discovery and development company focusing on novel small molecule therapies that address emerging targets in oncology using a proprietary&nbsp;discovery engine platform.

Targeting mutated MYD88 pro-survival signaling in B-cell malignancies

Our laboratory and those of others discovered highly recurring mutations in the gene MYD88 which are found in patients with various B-cell cancers including Waldenstrom’s Macroglobulinemia (95-97%), ABC Subtype of Diffuse B-cell Lymphoma (30-40%), Primary Central Nervous Lymphoma (80%), Marginal Zone Lymphoma (10%) and Chronic Lymphocytic Leukemia (5-10%).