Skip to main content

Research We Fund

With hundreds of projects currently underway, we fund scientists through our academic grant programs and biotech partners through our strategic venture philanthropy initiative. Use the filters below to find an LLS-funded project.

For a better viewing experience, please use a larger device.

Include results from ANY of the following country/countries
Include results from ANY of the following state(s)
Include results from ANY of the following program type(s)
Major Diseases
Specific Disease Types
Other Key Search Terms
Sameer Parikh

Sameer Parikh, MBBS

Mayo Clinic, Rochester

Rochester, Minnesota
United States

Immunogenicity and safety of commercially available vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with hematologic malignancies and associated precursor conditions

Mass immunization campaigns are underway in the US after the emergency use authorization of highly effective vaccines against SARS-CoV-2. Despite the efficacy of these measures, patients with B cell malignancies and associated precursor conditions remain at a high risk of adverse outcomes due to COVID-19 infection. These patients were excluded from pivotal vaccination trials that tested the efficacy in the general population. Historically, patients with hematologic malignancies have a 20-50% rate of immunogenicity to routine vaccinations – either due to the underlying malignancy itself or due to immunosuppressive therapies. We are currently enrolling patients in an observational study (NCT04748185) to assess the immunogenicity and safety of commercially available vaccines against SARS-CoV-2 in patients with B cell malignancies and associated precursor conditions such as monoclonal B cell lymphocytosis (MBL). Eligible patients who those with a diagnosis of a B cell malignancy (without regard to treatment status of the underlying malignancy). In collaboration with the Mayo Vaccine Center, we will determine immunogenicity of SARS-CoV-2 vaccination by: a) measuring antibody response (including anti-spike antibody, anti-nucleocapsid antibody, and blocking antibody titers); and b) measuring cell mediated immune response (including T cell ELISpot assay).

Program: Special Grants
Project Term: Start Date: June 1, 2021 End Date: December 31, 2021
Michael Keller

Michael Keller, MD

Children's Research Institute

Washington, District of Columbia
United States

T-cell immunotherapy for prevention of COVID-19 following bone marrow transplantation

SARS-Cov-2 infections may be prolonged in cancer patients and may enable intrahost development of virulent viral variants. Adoptive immunotherapy with virus-specific T-cells has been an effective treatment for refractory viral infections in immunocompromised patients following HSCT. We propose to study the functionality of coronavirus-specific T-cells (CSTs) from healthy donors, and utilize CSTs as preventative therapy for patients undergoing bone marrow transplant in a phase I study.

Program: Translational Research Program
Project Term: Start Date: July 1, 2021 End Date: June 30, 2024
Piers Patten

Piers Patten, PhD

King's College London

London
United Kingdom

Understanding SARS-Cov-2 evolution in haemato-oncology patients

Through phenotypic and functional studies of immune cells, proteomic mapping of immune responses and genomic studies of variant strains, this project will assess the evolution of natural SARS-CoV-2 infection and COVID-19 vaccine responses in hemato-oncology patients. Integration of immunological profiles and genomic outcomes with clinical characteristics will inform future best patient management, especially for those patients at risk of prolonged infection with long term viral shedding.

Program: Translational Research Program
Project Term: Start Date: September 1, 2021 End Date: August 31, 2024