UPDATE on CLL

Welcome & Introductions

John C. Byrd, MD
The Ohio State University
CLL Update on Diagnosis and Treatment

John C. Byrd M.D.
D. Warren Brown Chair in Leukemia Research
Professor of Internal Medicine and Medicinal Chemistry
Director, Division of Hematology
The Ohio State University
May 1, 2013

Chronic Lymphocytic Leukemia

- Most prevalent type of adult leukemia
- Defined by select flow cytometry markers on leukemia cells (CD5, CD19, CD20, CD23, slg).
- Median age of diagnosis of CLL is 72 years, with only 10% of patients under age 50.
- More common in men than women (2:1 ratio)
- Environmental predisposition uncertain, although Vietnam Veterans with Agent Orange exposure warrant “service-connected status”
- Genetic predisposition present, with approximately 10% of patients having a first-generation relative with CLL however no common gene has been identified
Critical Decision Times for CLL Patients

- **Diagnosis***
 - Learning about disease and impact on life
 - Working through stress of having a blood cancer and likely not doing anything (watch and wait versus watch and worry)

- **At time of first treatment***
 - Appropriate tests and choice of initial therapy
 - Consideration of clinical trials with non-chemotherapy based treatment

- **Relapse disease***
 - Appropriate tests and choice of and consideration of clinical trials/transplant

All junctures, in particular relapse are ideal times to see a CLL specialist who can work with your local doctor

Diagnosis and Evaluation of CLL

- Immunophenotype of blood to confirm diagnosis
- Physical exam and labs to confirm Rai stage
 - Rai 0 just lymphocytosis
 - Rai 1 lymph node enlargement
 - Rai 2 spleen enlargement
 - Rai 3 anemia (hemoglobin < 11 in absence of AIHA)
 - Rai 4 low platelets (<100 in absence of ITP)
- Bone marrow biopsy and CT scans not needed
- Prognostic factors
 - FISH—del(17p) and del(11q22.3) less favorable
 - IVGH mutational status—un-mutated less favorable
 - B2M—higher less favorable
 - Lymphocyte doubling time < 1 year—higher less favorable
 - Other prognostic factors include CD38, ZAP-70 and others
Typical Discussion Following Testing

- Asymptomatic low risk disease (Stage 1-2)
 - No therapy or consideration of early intervention as part of clinical trial
 - Follow up Q3 months for 1 year and than Q6m
- Asymptomatic high risk disease (Stage 1-2)
 - No therapy outside of trial but consideration of early intervention with non-chemotherapy approach in clinical trial
 - Follow up Q3m indefinitely
- Symptomatic low or high risk disease or Stage 3-4
 - Consider treatment based upon genetic findings
- Discussion of complications of disease

Autoimmune Cytopenias of CLL

- Autoimmune hemolytic anemia and thrombocytopenia common in CLL (10-25%) and often presents when disease is active
- Anemia or thrombocytopenia due to autoimmune complication does not impact survival and should not be used for staging
- Approach of AIHA and ITP requires assessment of secondary causes and relationship to disease or therapy
- AIHA and ITP treatment are quite similar with prednisone ± rituximab
Infections in CLL

- Most common cause of morbidity and mortality in CLL
- Preventative strategies include
 - Prevnar 13 at diagnosis and Q5 years
 - Influenza vaccine yearly and prophylaxis if exposed
 - No live vaccine (Including varicella zoster vaccine)
 - Viral and PCP prophylaxis with fludarabine or bendamustine
- IVIG use
 - Although expensive, it is effective prevent recurrent infections not cleared with multiple antibiotic courses
 - Consider giving for 1-2 months post influenza if IgG low

Other CLL Related Complications

- Secondary cancers
 - more common in CLL and related to immune suppression-
 regular screening should be considered for these
 - Bone marrow damage (MDS) more common after FCR
- Richter's Transformation
 - Pathology can be large cell lymphoma or Hodgkin’s Disease
 - PET scans can be extremely useful in deciding nodal region
to biopsy
 - Outcome of these patients poor and transplant should be
 considered
- Hypersensitivity to insects
When to Treat CLL Patients

- No advantage to treating CLL until symptoms develop irrespective of genomic features
- IWCLL 2008 criteria for treatment
 - Enlarging, symptomatic lymph nodes (> 10 cm)
 - Enlarging, symptomatic spleen (> 6 cm)
 - Cytopenias due to CLL (hemoglobin < 11, platelets < 100)
 - Constitutional symptoms due to disease (fatigue, B-symptoms)
 - Poorly controlled AIHA or ITP
 - Lymphocyte doubling time < 6 months or increase of 50% over a 2-month time period (weakest criteria)
- Lymphocyte count < 300 x 10^9/L not an indication for Rx

History of CLL Therapy: 1970-2013

- Chlorambucil: well tolerated oral agent but low response
- Fludarabine: higher response, longer remission but no major impact on survival; not beneficial to age >65 years
- Fludarabine/cyclophosphamide: higher response, longer remission, but no major impact on survival; MDS
- Antibody rituximab: well tolerated with low response
- Rituximab addition to fludarabine ± cyclophosphamide (FCR): higher response, longer remission and overall survival
 - FCR currently standard therapy for younger CLL patients
 - Bendamustine + Rituximab often substituted for FCR
Complications of FCR Therapy

- More common in patients > age 65
- Early
 - More neutropenia with rituximab; thrombocytopenia, and infection are similar
- Late
 - More Neutropenia with rituximab
 - Richter’s Transformation risk lowered with rituximab
 - Myelodysplasia (3%)
 - Secondary cancer 8-9%

Alternative Regimens for CLL Therapy

- Bendamustine/rituximab (Fischer et al, JCO 2012)
 - 117 pt phase II study of untreated pts, 30 > age 70
 - 88% ORR, 23% CR
 - 34 month PFS
 - less effective in del(17p) pts (35% PR)
 - Toxicity includes cytopenias, infections and rash with overall 3.4% mortality; ? Less than FCR
 - Phase III study testing this versus FCR
- High Dose Methylprednisolone + Rituximab
- Chlorambucil + Rituximab
- Lenalidomide
Therapy Approach for Patients < age 65

- Repeat interphase cytogenetics, perform a bone marrow biopsy to rule out non-CLL problem
- Clinical trial offered with strong consideration of non-chemotherapy bridge therapy
- Off trial
 - Del(17p13.1): rituximab + high dose solumedrol or FCR followed by non-myeloablative allogeneic stem cell transplant
 - Del(11q22.3): FCR, BR
 - Other genetic features: FR, BR
- Do not use PCR, rituximab, alemtuzumab, CLB or rituximab maintenance

Therapy Approach in Older Population (> 65 yrs)

- Not Fludarabine-based regimens irrespective of functional status; can consider
 - Bendamustine + Rituximab
 - Chlorambucil + Rituximab
- Infirmed patients: chlorambucil or rituximab
- New options: lenalidomide (approved by NCCN but insurance sometimes does not pay for)
 - Immune modulating agent
 - Reverses hypogammaglobulinemia seen in disease
 - Diminished infections as compared to other chemotherapy approaches
 - 64% progression free at 3-years
Considerations for Relapsed CLL

- Outcome of pts at time of relapse depend upon
 - Interphase cytogenetics, β₂M, and stage
 - Prior therapy (i.e. monotherapy or chemoimmunotherapy)
 - Time of remission with last treatment

- Interphase cytogenetics should be repeated prior to initiating salvage therapy

- All pts with cytopenias should have repeat bone marrow biopsy to assess for MDS if prior FCR given

- Transplant evaluation should be considered early in this pt population if any unfavorable features present

Salvage Regimens for CLL

- Fludarabine, Cyclophosphamide, and Rituximab
- Bendamustine + Rituximab-59% response and 14 m PFS with significant immune suppression
- High dose Solumedrol + Rituximab-30-50% response but very immunosuppressive
- Lenalidomide ± Rituximab-66% response and 24 m PFS
- Ofatumumab—50% response but short PFS and does not work in bulky del(17p13.1)
- Lymphoma salvage regimens (not effective except for Richters transformation
Our Goal in CLL Therapy: CML in 2012

86% 8-year OS in era of imatinib

Targeting BCR Signaling in CLL

B-cell antigen receptor (BCR) signaling is active in proliferation centers (LN, spleen, bone marrow)

High risk CLL patients with over-expression of ZAP-70 have more BCR signaling

Targeting BCR pharmacologically is now possible
GS-1101 (CAL-101) in CLL

- GS-1101 is an oral agent that targets PI3K-delta
- Ph I study in relapsed CLL/NHL with 54 CLL pts
- Pts had a median 5 prior Rx, 82%; 31% del(17p13.1)
- Response to therapy remarkable
 - 91% with node/spleen response that was rapid concomitant with early increase in lymphocytosis
 - 24% response overall due to persistent lymphocytosis
 - Remissions durable except in del(17p13.) with median PFS of 18 m
- Toxicity modest (LFT abnormalities, pneumonia)

GS-1101 Response and Outcome Summary

PFS -- Overall and by Response Category

PFS -- Overall and by 17p Deletion

Changes in Lymph Node Area and Blood ALC

Mean ALC and BLM (10,000)

Hemoglobin and Platelet Counts

GS1101 Current Direction

- Ongoing studies in CLL
 - Phase III Bendamustine/Rituximab ± GS-1101 in relapsed CLL
 - Phase III Ofatumumab ± GS-1101 in relapsed CLL
 - Phase III Rituximab ± GS-1101 in elderly, refractory CLL
 - Phase II Rituximab + GS1101 in untreated CLL (done)—to be reported at ASCO
 - Phase II Ofatumumab + GS110 in untreated CLL

Ibrutinib (PCI32765) in CLL

- Ibrutinib irreversibly inhibits of Bruton’s tyrosine kinase
- Phase Ib/II study to assess efficacy
 - 85 relapsed CLL pts Rx with 420 mg (n=51) or 840 mg n=34) dose; median 4 prior Rx, 65% advanced Rai, 35% del(17p13.1)
 - 31 elderly (age ≥65) with no prior Rx; 48% advanced Rai

 Response similar between two doses in relapsed pts
 - 92% with node/spleen response
 - 71% ORR/2% CR in previously Rx and 67% ORR/10% CR due to transient lymphocytosis produced by this class of drugs
 - PFS at 26 months 75% in previously Rx and 96% in unRx

 Toxicity profile modest (loose stools, arthralgia, fatigue dyspepsia, rash) with minimal myelosuppression

Ibrutinib Remissions Are Durable

R/R + High-Risk R/R (n=85)
Est. PFS at 26 mo is 75%
Treatment Naïve (n=31)
Est. PFS at 26 mo is 96%

Progression Free Survival by Genomic Feature

Relapsed/Refractory including High-Risk R/R
del(17p13.1)/del(11q22.3) Status
- del17p (n=28)
 Est. PFS at 26 mo is 57%
- del11q (n=23)
 Est. PFS at 26 mo is 73%
- No del17p or del11q (n=29)
 Est. PFS at 26 mo is 93%

IgVH Status
- Mutated (n=12)
 Est. PFS at 26 mo is 83%
- Unmutated (n=69)
 Est. PFS at 26 mo is 72%

Logrank p=0.0437
Logrank p=0.6732
Combination Studies with Ibrutinib

- PCYC 1109: Ibrutinib + Ofatumumab in relapsed CLL/SLL (completed, OSU)
- PCYC 1108: Ibrutinib + BR or FCR in relapsed CLL/SLL (completed, multicenter)
- IIT: Ibrutinib + Rituximab in high-risk CLL (completed, MDA)
- CTEP: Ibrutinib + Lenalidomide (U Col and OSU)

Summation of Results: Higher response rate and no obvious added toxicity

- Planned Intergroup Phase III studies
 - FCR vs Ibrutinib + Rituximab (< 70 yrs)
 - BR vs Ibrutinib + Rituximab vs Ibrutinib (> 65 yrs)

Where are BTK Inhibitors Going?

- Ibrutinib in relapsed phase III studies in CLL
 - Ibrutinib versus Ofatumumab (relapsed)
 - Ibrutinib + BR versus BR (relapsed)
 - Ibrutinib in relapsed del(17p) CLL

- Ibrutinib in untreated CLL - minimal development
 - Phase III study of Ibrutinib versus CLB in elderly CLL
 - Phase II of Ibrutinib in elderly CLL (MDA)

- Alternative agents
 - AVL292 (Does not appear as active as ibrutinib to date)
 - ONO-WG-307
 - HM71224
 - Others with improved features
Chimeric Antigen Receptor (CAR) T-Cells in CLL

- CAR contains an extracellular domain targeting CD19 and internal CD3 zeta chain, and costimulatory domain containing 4-1BB or CD28
- N=10 pts; Median age 66
- Chemotherapy 4-7 days pre-infusion
- 3 CR, 4 PR, 2 NR, 1 NE due to being too early

Other New Drugs (Before BCR antagonists)

- IPI-145—second generation PI3-kinase delta inhibitor
- Dinaciclib and Flavopiridol—active in CLL including del(17p)*
- ABT263 and ABT199—active in CLL including del(17p13.1)*
- Xm5574—CD19 engineered antibody active in CLL*
- GA101—CD20 engineered antibody active in CLL
- Tru-016—CD37 SMIP active in CLL*
- KPT330—XPO1 inhibitor—early activity in B-cell malignancies*

*supported by LEUKEMIA & LYMPHOMA SOCIETY fighting blood cancers
Important Conclusions

- Select genomic studies can assist in risk stratification of newly diagnosed patients.
- Rituximab chemoimmunotherapy offers a survival advantage for symptomatic CLL.
- Patients with del(17p13.1) who require therapy have very poor outcomes with traditional therapies.
- BTK inhibitor ibrutinib is very active in symptomatic untreated and treated CLL including those with del(17p) and yields very durable remissions.
- CAR-T cells are promising alternative to allo SCT.

The OSU CLL Team: http://cll.osu.edu/

Clinical
Michael Grever MD Jeffrey Jones MD Kristie Blum MD Leslie Andritsos MD Joseph Flynn DO, MPH Jeff Jones MD Kami Maddocks MD Deborah Stephens DO Gerard Lozanski MD (Pathology) Nyla Heerema PhD (Cytogenetics) Cheryl Kefauver RN, BS Beth Wiley BS JoAnne Padgett BA, LPN Sharon Waymer LPN Mona Stefanos BS Margaret Lucas PA Weihong Chase RNP Ying Yang RNP Gretchen McNailey RNP, PhD Erin Schmidt RNP

Faculty
Raj Muthusamy DVM, PhD Amy Johnson PhD David Lucas PhD Jennifer Woyach MD Deepa Sampath PhD Rosa Lapalombella PhD Erin Hertlein PhD

Technicians
Timothy Chen BS Carolyn Cheney BS Melanie Davis PhD Frank Frissora MS Virginia Goettl DVM, PhD Julita Jendrzejewska BS Christian Langwasser BS Arletta Lozanski BS Jessica MacMurray BS Ellen Sass BS Lisa Smith MS Kelly Smucker BS Will Towns BS Katie Williams MS

Post-Doctoral Fellows
Yiming Zhong PhD Yuh-Ying Yeh PhD Emilia Mahoney MD, PhD Jason Dubovsky PhD Dalia ElGamal PhD James Blachly MD Deborah Stephens DO

Graduate Students
Kyle Beckwith Rebekah Browning Priscilla Do Daphne Quinn Ta-Ming Liu Rajes Mani Emily McWilliams Yo-Ting Tsai
Acknowledgements: Non OSU

Pharmacyclics
Joe Buggy PhD
Betty Chang PhD
Danielle James MD
Lori Kunkel MD

Gilead Sciences Inc
Brian Lannutti PhD
David Johnson

CLL Clinical Investigators
S. M. O’Brien
J. A. Burger
B Grant
S. E. Coutre
J. P. Sharman
R. R. Furman
I. W. Flinn
D. A. Richards

Former Students
SM Herman PhD (NHLBI)

Support of our research by The Leukemia and Lymphoma Society, National Cancer Institute, Mr. and Mrs. Michael Thomas, The D. Warren Brown Foundation and The Harry Mangurian Foundation

UPDATE on CLL

Question and Answer Session
Dr. Byrd’s slides are available for download at www.LLS.org/programs
The Leukemia & Lymphoma Society's (LLS) Co-Pay Assistance Program offers financial assistance to qualified CLL patients to help with treatment-related expenses and insurance premiums. Patients may apply online or over the phone with a Co-Pay Specialist.

- **WEBSITE:** www.LLS.org/copay
- **TOLL-FREE PHONE:** (877) LLS-COPAY

For more information about CLL and other LLS programs, please contact an LLS Information Specialist.

- **TOLL-FREE PHONE:** (800) 955-4572
- **EMAIL:** infocenter@LLS.org