Overview of the Myelodysplastic Syndromes (MDS)

Brian A. Jonas, M.D., Ph.D. UC Davis School of Medicine February 4, 2017

What do these individuals have in common?

- 1) Astronomers
- 2) Newscasters
- 3) Politicians
- 4) MDS

MDS Questions to be Answered

- What is MDS?
- Why did I get MDS?
- What does it mean for my life?
- Is there treatment for it?
- How should I be treated?
 - When?
 - Why?
- What are some of the new advances in MDS?

Essentials for the Informed Pt with MDS

- Know your IPSS-R risk group
- Know your treatment options
 Including transplant, clinical trials
- Know what your treatment goals are
- Know the potential side effects of your treatments
- Know available MDS resources
- Have a caregiver available/involved

The Myelodysplastic Syndromes

The Myelodysplastic Syndromes (MDS)

- Heterogeneous group of clonal bone marrow failure syndromes
- 10-30,000 cases per year in US
- Median age 76, > in males
- Ineffective hematopoiesis

 Bleeding, infections, anemia
- Transformation to AML
- Variable clinical course
 - Need for accurate prognostication

List et al. NEJM 2005. Ma et al. Cancer 2007.

Epidemiology of MDS

MDS Incidence Increases With Age

Aul et al. Leuk Res 1998. Radlund et al. Eur J Haematol 1995.

Predispositions and Risk Factors for MDS

- Acquired Risk Factors (common)
 - Age
 - Mutagen exposure (chemotherapy, radiation, benzenes, tobacco)
 - Other hematologic disorders (e.g. AA, PNH)
- Heritable Predisposition (rare)

Pathogenesis of MDS

MDS is Like a Broken Down Assembly Line

Normal and Dysplastic Hematopoiesis

Dysfunctional progression along the maturation pathway

Pathogenesis of MDS

Aging is Associated with Clonal Hematopoiesis with Driver Mutations

Jaiswal et al, NEJM, 2014. Genovese et al, NEJM, 2014.

MDS is a Cancer

A Clonal Evolution from MDS to sAML

The MDS "Stem Cell" is the primitive Hematopoietic Stem Cell

Nilsson et al. Blood 2007. Tehranchi et al. NEJM 2010. Pang et al. PNAS 2013.

MDS is Associated with Chromosome Abnormalities...

Olney et al. Leuk Res 2006.

Recurrent Mutations in MDS

Presentation and Diagnosis of MDS

MDS Presentation

- Symptoms
 - Some are asymptomatic
 - Fatigue
 - Weakness
 - Bruising
 - Infections

- Signs
 - Pallor
 - Ecchymoses
- CBC
 - Anemia (most common)
 - Macrocytic
 - Neutropenia
 - Pelger-Huet cells
 - Thrombocytopenia

Diagnosis of MDS

Bone Marrow Biopsy and Aspirate

Morphology

K		And and a second	X	and	7
1	2	3	4	5	6
The state	11			¥	100
7	8	9	10	11	12
11	1	B B	Ĩ,	900 H	đć
13	14	15	16	17	18
86	11	**	6.0		
19	20	21	22	x	Y

Flow Cytometry Cytogenetics

FISH/Molecular

Differential Diagnosis of MDS

Spectrum of Indolent Myeloid Hematopoietic Disorders ^{2,3}					
Feature	ICUS	IDUS	CHIP	CCUS	MDS
Somatic mutation	-	-	+/- ¹	+/- ¹	+/-
Clonal karyotypic abnomality	-	-	+/- ¹	+/- ¹	+/-
Marrow dysplasia	-	+	-	-	+
Cytopenia	+	-	-	+	+

ICUS, idiopathic cytopenia of unknown significance; IDUS, idiopathic dysplasia of unknown significance; CHIP, clonal hematopoiesis of indeterminate potential; CCUS, clonal cytopenia of unknown significance; MDS, myelodysplastic syndromes

- Acute myeloid leukemia
- Other MPNs
- Aplastic anemia
- Nutritional deficiencies
- Medications

Prognostication of MDS

Prognostic Features in MDS

• <u>Clinical</u>

- CBC, marrow blasts, cytogenetics
- Age, PS, ferritin, LDH, β 2M, marrow fibrosis
- Treatment/Response
- <u>Molecular</u>
 - Specific mutations
 - Number of mutations

FAB and 2008 WHO Classification of MDS

French-American-British (FAB)	2008 World Health Organization (WHO)
Refractory Anemia (RA)	Refractory Cytopenia with Unilineage Dysplasia (RCUD)
и	RC with Multilineage Dysplasia (RCMD)
<i>u</i>	MDS associated with isolated del(5q)
RA with Ringed Sideroblasts (RARS)	RARS with unilineage dysplasia
	RCMD with ringed sideroblasts
RA with Excess Blasts (RAEB)	RAEB-1 (5-9% blasts)
<i>u</i>	RAEB-2 (10-19% blasts)
RAEB in Transformation (RAEB-T)	Acute Myeloid Leukemia (20+% blasts)
Chronic Myelomonocytic Leukemia (CMML)	MDS/MPN Overlap
N/A	MDS Unclassified (MDS-U)

2016 WHO Classification of MDS

Subtype	Blood	Bone marrow
MDS with single lineage dysplasia (MDS-SLD) ³	Single or bicytopenia	Dysplasia in ≥10% of one cell line, <5% blasts
MDS with ring sideroblasts (MDS-RS)	Anemia, no blasts	≥15% of erythroid precursors w/ring sideroblasts, or ≥5% ring sideroblasts if SF3B1 mutation present
MDS with multilineage dysplasia (MDS-MLD)	Cytopenia(s), <1 x 10º/L monocytes	Dysplasia in ≥10% of cells in ≥2 hematopoietic lineages, ± 15% ring sideroblasts, <5% blasts
MDS with excess blasts-1 (MDS-EB-1)	Cytopenia(s), ≤2%–4% blasts, <1 x 10º/L monocytes	Unilineage or multilineage dysplasia, 5%–9% blasts, no Auer rods
MDS with excess blasts-2 (MDS-EB-2)	Cytopenia(s), 5%–19% blasts, <1 x 10º/L monocytes	Unilineage or multilineage dysplasia, 10%–19% blasts, ± Auer rods
MDS, unclassifiable (MDS-U)	Cytopenias, ±1% blasts on at least 2 occassions	Unilineage dysplasia or no dysplasia but characteristic MDS cytogenetics, <5% blasts
MDS with isolated del(5q)	Anemia, platelets normal or increased	Unilineage erythroid dysplasia, isolated del(5q), <5% blasts
Refractory cytopenia of childhood	Cytopenias, <2% blasts	Dysplasia in 1–3 lineages, <5% blasts
MDS with excess blasts in transformation (MDS-EB-T) ²	Cytopenias, 5%–19% blasts	Multilineage dysplasia, 20%–29% blasts, ± Auer rods

International Prognostic Scoring System for MDS (IPSS)

International Prognostic Scoring System (IPSS)^{s,t}

Survival and AML	evoluti	on			
		Score value			
Prognostic variable	0	0.5	1.0	1.5	2.0
Marrow blasts (%) ^u	<5	5-10		11-20	21-30
Karyotype ^v	Good	Intermediate	Poor		
Cytopenia ^w	0/1	2/3			

IPSS Risk category (% IPSS pop.)	Overall score	Median survival (y) in the absence of therapy	25% AML progression (y) in the absence of therapy
LOW (33)	0	5.7	9.4
INT-1 (38)	0.5-1.0	3.5	3.3
INT-2 (22)	1.5-2.0	1.1	1.1
HIGH (7)	≥2.5	0.4	0.2

Cytopenias: <u>Hgb</u> < 10 <u>ANC</u> < 1800 <u>Plt</u> < 100,000

Cytogenetics:

<u>Good</u> – normal, -Y only, del(5q) only, del(20q) only <u>Intermediate</u> – +8, single misc, double abnormalities <u>Poor</u> – complex (≥3), abnormality of chromosome 7 **IPSS**

Greenberg et al. Blood 1997.

Revised International Prognostic Scoring System

- IPSS-R built upon prior IPSS
- Multinational IWG-PM project
- 7,012 patients with median age 71
- MDS classified by FAB and WHO
- New MDS cytogenetic classification
- Considered depth of cytopenias, age, LDH, ferritin, b2M, fibrosis, and PS

Greenberg et al, Blood 2012. Schanz et al, JCO 2012.

IPSS-R: Determining the Score

IPSS-R Score Values

Variable	0	0.5	1	1.5	2	3	4
Cytogenetics	Very Good		Good		Intermediate	Poor	Very Poor
Marrow blasts (%)	≤2		>2-<5		5-10	>10	
Hemoglobin	≥10		8-<10	<8			
Platelets	≥100	50-<100	<50				
ANC	≥0.8	<0.8					

Cytogenetic Risk	Abnormalities
Very Good	-Y, del(11q)
Good	Normal, del(5q), del(12p), del(20q), double including del(5q)
Intermediate	del(7q), +8, +19, i(17q), any other single or double
Poor	-7, inv(3)/t(3q)/del(3q), double including - 7/del(7q), complex = 3
Very Poor	Complex >3

Greenberg et al, Blood 2012.

IPSS-R: Calculating the Score

IPPS-R Risk	IPSS-R Score	Median OS (yr)	25% AML Progression (yr)
Very Low	≤1.5	8.8	NR
Low	>1.5-3	5.3	10.8
Intermediate	>3-4.5	3	3.2
High	>4.5-6	1.6	1.4
Very High	>6	0.8	0.7

IPSS-R: Survival and AML Progression

• CBC values, bone marrow blasts, cytogenetics

Greenberg et al, Blood 2012. Schanz et al, JCO 2012.

IPSS-R Calculator from the MDS Foundation

Online tool and smartphone app available for free from the MDS Foundation: <u>http://www.mds-foundation.org/interactive-tools/</u>

ad International Dragnactic	Variables (units) [usual range]
eoring System (IPSS-R) for elodysplastic Syndromes	Hemoglobin (g/dL) [4-20] A Possible conversion for Hb values: 10 g/dL=6.2 mmol/L, 8g/dL=5.0 mmol/L
ssessment Calculator	7.9
	Absolute Neutrophil Count (x10 ⁹ /L) [0-15]
	1.6
	Platelets (x10 ⁹ /L) [0-2000]
WG-PM	230
RNATIONAL WORKING GROUP	Bone Marrow Blasts (percent) [0-30]
	3
	Cytogenetic Category ?
sgreen to enter calculator	Good
the myelodysplastic syndromes foundation, inc	Calculate > Reset Calculator
MDS Foundation. All rights reserved.	
	Values Results Tables Links

Revi

Risk

© 2012

Results Reset Calculator

IPSS-R Score 3 IPSS-R Category intermediate

Clinical Outcomes

3.0 years, median survival 3.2 years, median time to 25% developing AML

Age Adjusted Score (Only for survival estimation)

Enter Age (years)

IPSS-RA (age) Score 3 IPSS-RA (age) Category intermediate

Clinical Outcome

3.0 years, median survival

Resource Tables

Prognostic /ariable	0	0.5	1	1.5	2	3	4
Cytogenetics	Very Good		Good		Intermediate	Poor	Very Poor
BM Blast %	<=2		>2-<5%		5-10%	>10%	
Hemoglobin	=>10		8-<10	<8			
Platelets	=>100	50-< 100	<50				
ANC	=>0.8	<0.8					

IPSS-R Cytogenetic Risk Groups*,**

Cytogenetic Prognostic Subgroups	Cytogenetic Abnormalities
Very good	-Y, del(11q)
Good	Normal, del(5q), del(12p), del(20q), double including del(5q)
Intermediate	dei(7q), +8, +19, i(17q), any other single or double independent clones
Poor	-7, inv(3)/t(3q)/del(3q), double including -7/del(7q), Complex: 3 abnormalities
Very Poor	Complex: >3 abnormalities

IPSS-R:	Prognostic	Risk	Category	Clinical	Outcomes

	No. Pts	Very Low	Low	Intermediate	High	Very High
Risk Score		≤1.5	>1.5-3	>3-4.5	>4.5-6	>6
Patients (%)	7012	19%	38%	20%	13%	10%
Survival***		8.8	5.3	3.0	1.6	0.8
AML/25%***,^		NR	10.8	3.2	1.4	0.7

Reference

*Greenberg,Tuechler, Schanz et al, Revised

Improving MDS Prognostication

- Rapid advances in understanding MDS pathogenesis
- Improvements in diagnostic and analytic tools
- Future PSS likely to include:
 - Flow cytometry
 - Gene mutations
 - Comorbidity assessments

Number of Driver Mutations Affects Prognosis

20

10

Ó

30

Time (months)

40

50

60 70

Recurrent and Prognostic Gene Mutations

Function	Gene		
Epigenetic/Chromatin Modifiers	TET2, DNMT3A [#] , ASXL1, EZH2		
Splicing	SF3B1, SRSF2, U2AF1 [#] , ZRSR2		
Differentiation	RUNX1		
DNA Damage Response/Apoptosis	TP53 [*] , BCOR		
Cohesin Complex	STAG2		
Signaling	CBL		

Recurrent in >5% of MDS patients across multiple studies **Favorable** prognostic impact **Negative** prognostic impact **Neutral** prognostic impact *Strong negative prognostic impact in therapy-related MDS #Strong negative prognostic impact in CMML

Table adapted from: Haferlach et al, Leukemia 2014; Bejar et al, NEJM 2011; Papaemmanuil et al, Blood 2013; Walter et al, Leukemia 2013; and Thol et al; Blood 2012.
Combining Mutations with IPSS Can Improve Prognostication

IPSS and TP53, EZH2, ETV6, RUNX1 and ASXL1 mutations

From Bejar et al, NEJM 2011.

Revised IPSS-R: Incorporation of Mutations

Model:

Gender, Age, IPSS-R Variables Mutations in: ASXL1, CBL, ETV6, EZH2, KRAS, LAMB4, NCOR2, NF1, NPM1, NRAS, PRPF8, RUNX1, TET2 and TP53

Treatment of MDS

Considerations for MDS Therapy

- Age, comorbidity, quality of life, and psychosocial assessments
- Treatment goals based on risk and mode of disease-related mortality
- All patients get "best supportive care"
 - Transfusions for anemia, thrombocytopenia
 - Antibiotics -/+ G-CSF for infections
- Iron chelation therapy may be required

FDA Drug Approvals

- Epo 1993; Darbepoetin 2002
 - for chemotherapy-induced anemias
- GCSF 1996; Peg-GCSF 2002
 - for infection ('93 w/ Epo SUH)
- Azacitidine 2004
- Lenalidomide 2005 for (del)5q MDS
- Decitabine 2006
 - 2010: 5 day outpt regimen
- Deferasirox 2005; Deferiprone 2011
 - for iron chelation

Treatment Approaches in MDS

* Differentiating features: age, performance status, ferritin, LDH

Treatment Options for Lower Risk MDS

- Supportive care (transfusions, antibiotics)
- Anemia (EPO<500): Erythroid Stimulating Agents (ESAs)
 - Erythropoietin (Procrit/Epogen)
 - Darbepoetin (Aranesp) +/- G-CSF (Neupogen)
- 5q-: Lenalidomide (*Revlimid*)
- non-5q-: Lenalidomide (*Revlimid*) +/- Erythropoietin (*Procrit/Epogen*)
- Int-1/'young': ATG, cyclosporin
- RBC transfusions >20-30u: Iron chelation
 - Deferasirox (*Exjade* oral) or Deferoxamine (*Desferal* sc)
 - If ferritin >2500, goal is <1000
- Thrombocytopenia:
 - [Eltrombopag (*Promacta*), Romiplostim (*Nplate*)]
- Neutropenia: G-CSF (*Neupogen/Neulasta*)
- Clinical trials

Therapeutically Targeted Subtypes of MDS

- RARS
- 5q-
- Hypoplastic/<60yo HLA-DR15+
- CMML w/ t(5q31-33)/ PDGFR β gene rearrang' t

- GCSF + Epo
- Lenalidomide
- Immunosuppression (ATG, CSA)
- Imatinib

Lenalidomide is Effective for MDS with del(5q)

Figure 1. Kaplan–Meier Estimate of the Duration of Independence from Red-Cell Transfusion.

Circles represent censored data from patients who remained transfusionfree at the time of data cutoff (July 15, 2005) or at the time of study discontinuation. On the x axis, 0 indicates the day after the patient's last transfusion preceding a response to treatment. After a median follow-up of 104 weeks, the median duration of transfusion independence could not be estimated.

Lenalidomide is Effective for MDS with del(5q)

Table 2. Erythroid Response to Lenalidomide.					
Variable	Continuous Daily Dosing (N=102)*	21-Day Dosing (N=46)*	All Patients (N=148)		
Transfusion independence	71 (70)	28 (61)	99 (67)		
95% CI		(/	59-74		
≥50% decrease in no. of transfusions	8 (8)	5 (11)	13 (9)		
95% CI			5–15		
Total transfusion response	79 (77)	33 (72)	112 (76)		
95% CI			68–82		
Time to response — wk					
Median	4.7	4.3	4.6		
Range	1-34	1–49	1–49		
Hemoglobin — g/dl					
Baseline†					
Median	7.7	8.0	7.8		
Range	5.3-10.4	5.6-10.3	5.3-10.4		
Response <u></u>					
Median	13.4	13.5	13.4		
Range	9.2-18.6	9.3-16.9	9.2-18.6		
Increase					
Median	5.4	5.4	5.4		
Range	2.2-11.4	1.1-9.1	1.1–11.4		

* The daily dose was 10 mg.

⁺ The baseline hemoglobin concentration was the minimum value during the baseline period.

The response hemoglobin concentration was the maximum value during the transfusion-independent response period.

Lenalidomide is Also Effective for non-del(5q)

Phase II Study of Lenalidomide in Low and Int-1 Risk MDS with Normal or Abnormal Karyotypes Other than del(5q) ^{a,1} (n=214)						
	Lenalidomide 10 mg q day (n=100)	Lenalidomide 10 mg q day X 21 days every 28 days (n=114)	All Patients			
Erythroid Response: Transfusion- independence ^{b,c}	27%	25%	26%			
Median Time to response (weeks)	7.4	4.1	4.8			
Baseline Hb (gm/dL)	7.9	8.1	8.0			
Median Hb at Response (gm/dL)	11.6	11.0	11.6			
Median Increase in Hb (gm/dL)	3.3	3.1	3.2			

^a IPSS: 79% low and int-1, 4% int-2, 18% indeterminate; 83% IPSS cytogenetic group good, 13% intermediate, 1% poor, 3% missing

b 19% patients had cytogenetic response with 8% patients with complete cytogenetic remission

° Median duration of transfusion-independence was 41 weeks for median follow-up of 76 weeks

Toxicities (all patients):

Neutropenia, grade 3-4	25%
Thrombocytopenia, grade 3-4	20%
Rash, grade 3-4	4%
Autoimmune hemolytic anemia	3%

Raza et al. Blood 2008.

Treatment Options for Higher Risk MDS

- Supportive care (transfusions, antibiotics)
- Low intensity therapy
 - Azacitidine (*Vidaza*)
 - Decitabine (Dacogen)
 - Clinical trial
- High intensity therapy
 - Intensive chemotherapy (standard or clinical trial)
 - Stem Cell Transplant (standard or reduced intensity)
 --donor available, performance status, age

HMA inhibit DNA methyltransferases and induce DNA Hypomethylation and Gene Activation

- Hypomethylating agents: 5-Azacitidine (AZA) and 5-aza-2'-deoxycytidine (Decitabine/DAC)
- Pyrimidine nucleoside analogs
- AZA/DAC are incorporated into DNA in lieu of cytosine residue
- Leads to inactivation of DMT
- Leads to formation of newly synthesized DNA with unmethylated cytosine residues
- Results in hypomethylation and transcription of previously quiescent genes

AZA-001 – AZA vs Conventional Care in Higher Risk MDS

Higher Risk MDS (IPSS Int-2 or HR) FAB-defined P3, international, multicenter, randomized AZA: 75mg/m2 SC days 1-7 every 28 days (at least 6 cycles) BSC: transfusions, G-CSF (for febrile neutropenia) LDAC: 20mg/m2 SC days 1-14 every 28 days (at least 4 cycles) IC (7+3 chemo): Cytarabine 100-200mg/m2/day CIV x7d Anthracycline IV daily x3d

Fenaux et al. Lancet Oncology 2009.

AZA-001: Hematologic Improvement (2000 IWG)

Fenaux et al. Lancet Oncology 2009.

Azacitidine (HMA) Significantly Improves Survival in Higher Risk MDS

Cl=confidence interval; HR=hazard ratio; ITT=intent-to-treat.

EORTC-06011: Randomized Phase 3 Study of Low-Dose Decitabine vs BSC for Higher-Risk MDS

EORTC-06011: Overall Survival

Lubbert et al, JCO 2011.

EORTC-06011: Response and Toxicity

Response	BSC	Decitabine
CR	0%	13%
PR	0%	6%
Н	2%	15%
SD	22%	14%
PD	68%	29%
Hypoplasia	0%	14%
Inevaluable	8%	8%

Decitabine arm:

26% went off protocol for treatment completion 16% for toxicity

Why no survival advantage?

Limited courses?

More poor risk cytogenetics, older, lower PS?

Dosing/schedule?

Aza is better?

	BSC (n = 1	BSC (n = 114)		oine 14)*
Adverse Event	No. of Patients	%	No. of Patients	%
Febrile neutropenia				
Grade 3	6	5.3	25	21.9
Grade 4	2	1.8	4	3.5
Infection with grade 3/4 neutropenia			25	
Grade 3	33	28.9	35	30.7
Grade 4	7	6.1	19	16.7
Infection				
Grade 3	45	39.5	44	38.6
Grade 4	12	10.5	22	19.3
Hemorrhage				
Grade 3	14	12.3	15	13.2
Grade 4	4	3.5	5	4.4
Fatigue				
Grade 3	12	10.5	5	4.4
Grade 4	4	3.5	5	4.4
Nausea				
Grade 1	9	7.9	25	21.9
Grade 2	8	7.0	8	7.0
Grade 3	1	0.9	2	1.8
Vomiting				
Grade 1	3	2.6	13	11.4
Grade 2	7	6.1	5	4.4
Grade 3	1	0.9	1	0.9
Diarrhea				
Grade 1	9	7.9	12	10.5
Grade 2	9	7.9	17	14.9
Grade 3	5	4.4	4	3.5

Abbreviation: BSC, best supportive care.

*Patients randomly assigned in the decitabine arm who received at least one decitabine infusion were included in this analysis.

ADOPT Trial: Confirmation of 5-day Decitabine Dosing

Initial decitabine study dosing is 15mg/m2 IV over 3h q8h x3d every 6 weeks Authors studied a convenient schedule for outpatients: 20mg/m2 IV over 1h days 1-5 every 4 weeks and confirmed Kantarjian et al. Blood 2007.

Table 2. Responses to Decitabine Treatment					
	ITT (N = 99)				
Response by 2006 IWG Criteria	No. of Patients	%			
Overall complete response rate, CR + mCR	32	32			
Overall response rate, CR + mCR + PR	32	32			
Overall improvement rate, CR + mCR + PR + HI	50	51			
Rate of stable disease or better, CR + mCR + PR + HI + SD	74	75			
CR	17	17			
mCR	15	15			
PR	0	0			
HI	18	18			
SD	24	24			
PD	10	10			
Not assessable*	15	15			

Fig 1. Time to first response and best response by cycle (n = 50). CR, complete response; mCR, marrow CR; PR, partial response; HI, hematologic improvement.

Median time to best response 1.7months

	% of F	Patients
Event	Grade 1-2	Grade ≥ 3
Hematologic		
Neutropenia	1	31
Thrombocytopenia	2	18
Febrile neutropenia	3*	14
Anemia	5	12

Nonhematologic		
Fatigue	26	5
Nausea	26	1
Pyrexia	17	0
Diarrhea	12	0
Anorexia	12	0
Constipation	11	0
Pneumonia	1	11
Vomiting	10	1
Chills	10	0

Steensma et al. JCO 2009.

Meta-Analysis of HMA vs Conventional Care

Overall Survival

HR (fixed) Weight HR (fixed) Study 95% CI 95% CI or sub-category % 01 best supportive care Wijermans 2008 35.79 0.88 [0.66, 1.17] 0.80 [0.58, 1.12] Silverman 2006 26.40 Fanaux 2009 23.55 0.59 [0.42, 0.85] Subtotal (95% CI) 85.73 0.77 [0.64, 0.92] Test for heterogeneity: $Chi^2 = 2.97$. df = 2 (P=0.23). $I^2 = 32.7\%$ Test for overall effect: Z = 2.79 (*P*=0.005) 02 low dose ARA C Fanaux 2009 9.73 0.38 [0.22, 0.66] -----٠ Subtotal (95% CI) 9.73 0.38 [0.22, 0.66] Test for heterogeneity: not applicable Test for overall effect: Z = 3.43 (P=0.0006) 03 Intensive chemotherapy Fanaux 2009 4.54 0.76 [0.34, 1.71] Subtotal (95% CI) 4.54 0.76 [0.34, 1.71] Test for heterogeneity: not applicable Test for overall effect: Z = 0.66 (*P*=0.51) Total (95% CI) 100.00 0.72 [0.60, 0.85] Test for heterogeneity: $Chi^2 = 8.55$, df = 4 (P=0.07), $l^2 = 53.2\%$ Test for overall effect: Z = 3.80 (P=0.0001)0.001 0.01 0.1 10 100 1000 1 Favors BSC Favors treatment

Time to AML or Death

Study or sub-category	HR (fixed) 95% Cl	Weight %	HR (fixed) 95% Cl
01 Decitabine Wijermans 2008 Kantarijan 2006 Subtotal (95% CI) Total events: 0 (Treatment), 0 (Con Test for heterogeneity: Chi ² = 0.01, Test for overall effect: Z = 1.37 (<i>P</i> =	trol) df = 1 (<i>P</i> =0.94), I ² = 0%	39.76 14.25 54.01	0.85 [0.64, 1.12] 0.83 [0.52, 1.33] 0.85 [0.66, 1.07]
02 Azacitidine Silverman 2002 Fanaux 2009 Subtotal (95% CI) Total events: 0 (Treatment), 0 (Con Test for heterogeneity: Chi ² = 0.43, Test for overall effect: Z = 4.64 (<i>P</i> <	trol) df = 1 (<i>P</i> =0.51), l ² = 0% 0.00001)	20.07 25.92 45.99	0.60 [0.40, 0.88] 0.50 [0.35, 0.71] 0.54 [0.42, 0.70]
Total (95% CI) Total events: 0 (Treatment), 0 (Con Test for heterogeneity: $Chi^2 = 6.60$, Test for overall effect: Z = 4.16 (<i>P</i> <	trol) df = 3 (<i>P</i> =0.09), I ² = 54.6% 0.0001)	100.00	0.69 [0.58, 0.82]
0.1 Fa	0.2 0.5 1 2 avors treatment Favors con	5 10 trol	

Study or sub-category	Hypomethylating n/N	Control n/N	RR (ra 95%	andom) % Cl	Weight %	RR (random) 95% Cl
Wijermans 2008 Silverman 2002 Kantarijan 2006 Fanaux 2009	40/119 60/99 27/89 87/179	2/114 5/92 6/81 51/179			 → 21.23 → 25.19 → 25.43 → 28.15 	19.16 [4.74, 77.44] 11.15 [4.69, 26.54] 4.10 [1.78, 9.41] 1.71 [1.29, 2.25]
Total (95% CI) Total events: 214 (Hypom Test for heterogeneity: Ch Test for overall effect: Z =	486 nethylating), 64 (Control) $n^2 = 35.11$, df = 3 (<i>P</i> =0.00001), = 2.69 (<i>P</i> =0.007)	466 I² = 91.5%			⊨ 100.00	5.72 [1.60, 20.39]
2		(0.1 0.2 0.5 Favors control	1 2 5 Favors interve	10 ntion	

Gurion et al. Haematologica 2010.

CALGB 9221: Responses in Lower-Risk MDS

Median time to response: 2 mos Median duration of response: 15 mos (all pts)

HI: 50% improvement in 1 or 2 peripheral blood counts or 50% decrease in transfusion requirements

PR: 50% improvement in 3 peripheral blood counts and transfusion independent and ≤50% initial marrow blasts

CR: Normalization of peripheral blood counts and ≤5% marrow blasts

Silverman et al. JCO 2002

Decitabine after AZA Failure can salvage some patients

Figure 1. Overall survival of all the 14 patients.

					-				
	Number of prior Aza courses	Best response to Aza	Reason off Aza/weeks off Aza	Weeks from prior Aza before DAC	Best response to DAC/courses to response	Response duration (months)	Percent marrow blasts pre/at response	Platelets pre/at response	ANC pre/at response
1	8	Marrow CR	PD	3	CR/3	9.7	15/1	24/336	1.1/3.2
2	4	SD	NR	11	Marrow CR/3	8.2	8/4	65/95	1.8/5.1
3	4	SD	NR	9	CR/5	11.3 +	12/3	80/234	0.6 - 1.4
4	1	N/A	Toxicity	5	CR/1	10.2	13/4	24/110	0.38/2.8

Table III. Characteristics of responders.

CR, complete remission; Aza, azacitidine; DAC, decitabine; SD, stable disease; PD, progressive disease; NR, no response; ANC, absolute neutrophil count.

Decitabine 20mg/m2 IV days 1-5 on a 28-day cycle

Borthakur et al. Leuk Lymph 2008.

HR MDS Post HMA Failure OS by Salvage Rx

2014 ASH Abstracts:

3275 (Nazha et al.): IPSS-R best predicts outcomes

3273 (Nazha et al.): SD after 6mo unlikely to improve -> clinical trials

Prébet et al. JCO 2011.

LR MDS Post HMA Failure OS by Salvage Rx

Jabbour et al. ASH 2013 abstract 388

Induction Chemotherapy for MDS

Retrospective, MD Anderson Experience n=394 (no 5q- patients included)

Induction	Regimen a
-----------	-----------

	IA	FA	FAI	TA	CAT	Total
Number of patients	67	76	118	74	59	394
Median age, years	58	63	62	64	63	
FAB: RAEB	21%	33%	33%	47%	31%	
RAEB-T	79%	69%	67%	53%	69%	
IPSS: Int-1	17%	18%	7%	21%	17%	
Int-2	40%	33%	37%	38%	42%	
High	42%	48%	56%	41%	42%	
Early death (first 6 weeks)	15%	18%	21%	5%	15%	
Overall CR rate	72%	61%	48%	59%	58%	58%
IPSS: Int-1						64%
Int-2						60%
High						56%
Median survival ^b , weeks	88	33	30	45	(c)	
IPSS: Int-1						85
Int-2						45
High						38
Median survival ^b for patients achieving CR (n=229), weeks	91	30	36	41	(c)	
IPSS: Int-1						77
Int-2						54
High						31

^b After achieving CR, most patients proceeded to consolidation chemotherapy, and some patients (0–11% across the five regimens) proceeded to HSCT

CR 40-60%, median duration CR <1yr Early mortality 17%, 5yr OS 8%

Consider in: Younger fit patients <65-70 High blast percentage (>10%) Non-adverse cytogenetics Transplant candidate with donor Post-remission chemotherapy should be given

Beran et al. Cancer 2001. Kantarjian et al. Cancer 2006. Knipp et al. Cancer 2007. Malcovati et al, Blood, 2013.

HMA vs Induction chemotherapy in MDS with 10-30% blasts

 330 pts: 93 (28%) Rx with HMA and 237 (72%) with chemo Rx

Parameter	HMA	Intensive Chemo Rx	p value
-% CR + CRp	42	60	.01
-Median Rem. dur. (mos)	14.7	14.7	
-%8-wk mortality	10	13	
-median OS (mos)	18.8	14.6	.32

• Multivariate analysis: worse OS with chemo Rx

Allogeneic Transplant Can Cure MDS

Retrospective analysis GITMO Adjusted for age, IPSS, donor type and conditioning intensity

Alessandrino et al. JCO 2013.

Timing of Allogeneic Transplant in MDS

Retrospective analysis of MDS patients <60 with MA MRD allo-HCT or 60-70yo with RIC MRD allo-HCT using a Markov decision model.

Figure 3. Net benefit or loss of overall discounted life expectancy for the 4 IPSS risk groups are shown above and below the x-axis. A net benefit for delaying transplantation is noted for low and int-1 risk groups, whereas any delay in the time to transplantation is associated with a loss in survivorship in the higher risk groups.

<60yo: Cutler et al. Blood 2004.

Della Porta et al, ASH 2014 Abstract#531: IPSS-R Int should be considered for Allo-HCT

60-70yo: Koreth et al. JCO 2013.

Pre-Transplant Therapy in MDS

- Pretransplant blasts >5% and failure to achieve CR correlate with relapse with RIC HCT
- Retrospective analyses of IC before HCT show no convincing evidence
- No significant differences in outcomes between HMA and IC pre-transplant
- No significant benefit of HCT after HMA/IC compared to upfront HCT
- High-risk MDS patients should proceed directly to transplant without delay if possible
 - Fit younger patients may benefit from "rescue" IC
 - Older patients and those with poor-risk cytogenetics may benefit from "bridging therapy" with HMA

AZA vs IC Pre-Transplant

*Adjusted for Cyto Risk, IPSS, Donor Source

Med age: aza 60; IC 47 High intensity: aza 40%; 100% IC RAEB-T: aza 6%; 33% IC Aza 2004-2010; IC 1992-2002

Gerds et al. BBMT 2012.

Iron Chelation Therapy

- RBC transfusions: ≥20-30
- Symptomatic anemia/Further RBC txn need
 -- mainly Low, Intermediate-1 IPSS subtypes
- Evidence/pre-history of organ dysfunction
 - -- cardiac, hepatic, endocrine
- Serum ferritin >2500 \rightarrow 1000; \uparrow Liver iron content
- Rx: Deferrioxamine (*Desferal*) SQ or
 - oral iron chelator Deferasirox (Exjade)

New Advances in MDS

Novel Agents/Combinations in MDS

- Lower Risk MDS:
 - Oral Azacitidine (CC-486)
 - Eltrombopag
 - Luspatercept
 - Sotatercept
- Higher Risk MDS:
 - Rigosertib
 - Azacitidine combinations
 - Vorinostat
 - Rigosertib
 - Eltrombopag
 - Birinapant
 - Lenalidomide
 - Entinostat
 - Pracinostat

- Other novel agents/combinations
 - Guadecitabine (SGI-110)
 - Sapacitabine (CYC682)
 - Clofarabine plus LDAC
 - Vosaroxin plus Decitabine
 - Ibrutinib
 - Bcl-2 inhibitors
 - PD-1 pathway inhibitors
 - IDH1/2 inhibitors
 - WT1 peptide vaccine
 - Targeted agent for splice factor mutations

UC Davis Comprehensive Cancer Center MDS Trials

- Lower risk
 (IPSS-R VL/L/I)
- None

- Higher risk
 (IPSS-R I/H/VH)
- P1b Azacitidine + Ibrutinib
- P1 Lenalidomide + Ibrutinib

www.ucdmc.ucdavis.edu/CANCER/clinical_trials/

Stanford MDS Center: Biologically Focused Clinical Trials

• Lower risk: (IPSS-R VL, Low, Int)

- Luspatercept,III (TGFβ inhibitor for ring sideroblastic MDS)
- Spliceosome inhibitor, I/II (H3B-8800)

- **Higher risk:** (IPSS-R High, Very High)
- Spliceosome inhibitor,I/II (H3B-8800)
- AzaC & PD-L1 inhibitor,I/II (atezolizumab)
- RIC HSCT vs HMA,III
UCSF MDS Trials

- Lower risk
 (IPSS-R VL/L/I)
- None

- Higher risk
 (IPSS-R I/H/VH)
- MDM2 inhibitor
- IDH1 inhibitor (AG-120)

Summary and Concluding Thoughts

MDS Summary

- MDS is a heterogeneous group of BM failure syndromes
- Variable clinical presentation and course
- Choice of therapy is primarily based on IPSS-R score, symptoms, age and comorbidities
- Understanding of pathogenesis, prognostication and treatment is evolving
- Novel biospecific therapies are being evaluated

MDS Resources

- Leukemia and Lymphoma Society
- MDS Foundation
- Aplastic Anemia and MDS Foundation
- National Comprehensive Cancer Network (NCCN)
- UCD, UCSF and Stanford Cancer Centers
 - Brian Jonas (UCD)
 - Peter Greenberg (Stanford)
 - Rebecca Olin (UCSF)

MDS Questions to be Answered

- What is MDS?
- Why did I get MDS?
- What does it mean for my life?
- Is there treatment for it?
- How should I be treated?
 - When?
 - Why?
- What are some of the new advances in MDS?

Essentials for the Informed Pt with MDS

- Know your IPSS-R risk group
- Know your treatment options
 Including transplant, clinical trials
- Know what your treatment goals are
- Know the potential side effects of your treatments
- Know available MDS resources
- Have a caregiver available/involved

Questions?

Email: bajonas@ucdavis.edu

