Treating Adult Acute
Lymphoblastic Leukemia (ALL)

Welcome & Introductions

Dr. Lazarus's slides are available for download at www.LLS.org/programs

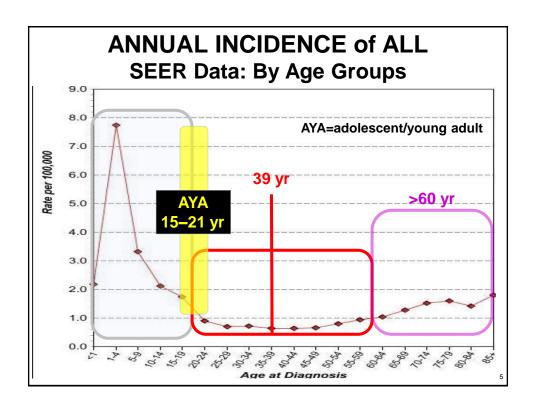
1

Treating Adult Acute Lymphoblastic Leukemia (ALL)

Hillard M. Lazarus, MD, FACP
Professor of Medicine
Case Western Reserve University
Director, Novel Cell Therapy
George & Edith Richman Professor and
Distinguished Scientist in Cancer Research
University Hospitals Cleveland Medical Center
Cleveland, Ohio

Tuesday, May 23, 2017

Disclosure

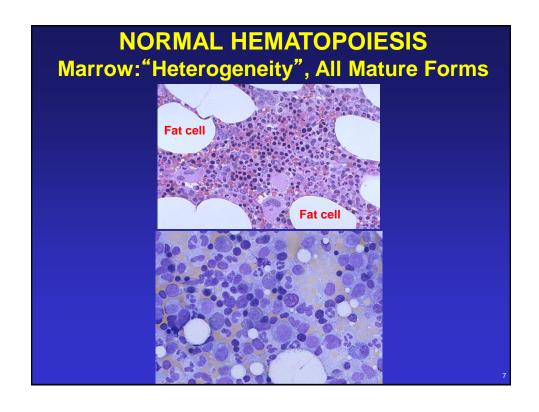

Hillard M. Lazarus, MD, FACP, has affiliations with Amgen, Bristol-Myers Squibb, Jazz Pharmaceuticals (*Speakers' Bureau*); and Jazz Pharmaceuticals (*Consultant*).

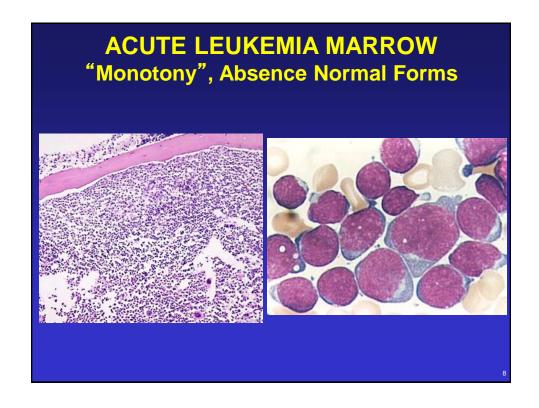
Tuesday, May 23, 2017

3

PRESENTATION OBJECTIVES Acute Lymphoblastic Leukemia (ALL)

- Describe biology and presentation of ALL and sub-types
- Review the current treatments and side effects for
 - new diagnosis
 - · relapsed/refractory disease
- Discuss new and novel initiatives and side effects
- Assess importance of team approach to successful therapy



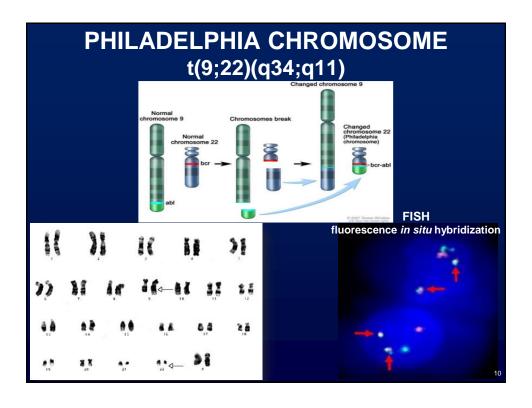

ACUTE LYMPHOBLASTIC LEUKEMIA Epidemiology in USA

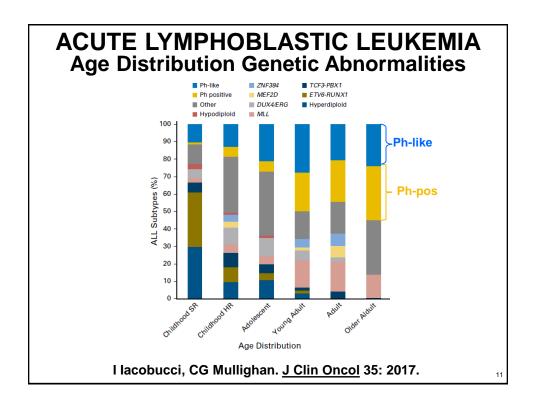
- 2014: 6,020 new patients and 1,400 deaths
- 60% of ALL are < age 20 yr; childhood peak age 4 yr
- Most common childhood malignancy; 30% all cancers
- Median age onset [adult: >20 yr]: 64 yr
- Hispanic > White > Black
 Siegel R, et al. <u>CA Cancer J Clin</u> 64: 9-29, 2014

	Complete Remission	Leukemia-Free Survival
Adults	80-90%	35-40%
Children (2-10 yrs)	97%	80%

CH Pui, WE Evans. N Engl J Med 354: 166-78, 2006

ALL CLASSIFICATION Immunophenotypic


ALL Philadelphia chromosome (Ph) - negative


ALL Philadelphia chromosome (Ph) - positive

ALL Philadelphia chromosome (Ph) - like

	Children	Adults	
B-lineage			
Precursor B	70%	55%	
Pre B	10%	15%	
Mature B	<5%	5%	
T-lineage	15%	25%	

- 20%-30% adult ALL aberrant coexpression myeloid markers
- 2%-5%: True bi-phenotypic acute leukemia

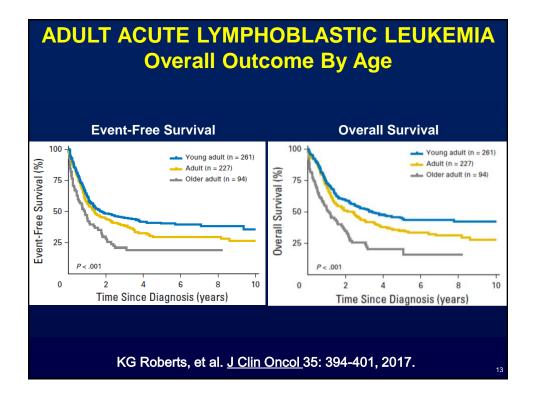
ALL

Clinical Prognostic Factors: Favorable

Standard risk

Decreasing age

<35 yr


Decreasing WBC

<30,000/mcL for B-cell lineage

<100,000/mcL for T-cell lineage

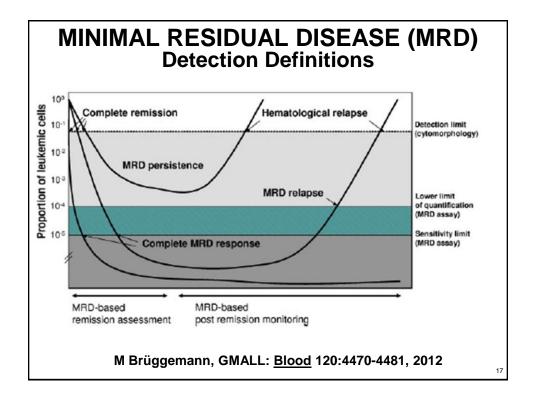
T-cell lineage

Attainment complete remission (CR) within 4 weeks (+/-) Myeloid marker co-expression no prognostic impact

ADULT ALL Ph-NEGATIVE Initial Treatment: Adopted from Peds

- Induction (plus CNS prophylaxis) as:
- Vincristine, prednisone, anthracycline, L-asparagine vs
 Hyper CVAD
- Consolidation and maintenance + CNS prophylaxis
- L-asparaginase: enzyme depletion serum L-asparagine
 - Activity related to serum L-asparagine depletion
 - No myelosuppression

ALL Ph NEGATIVE	
How Old Too Old For Peds Regimen?	?


Patients	N	CR rate	Induction death rate	5-year CIF		ear RM	5-year EFS
					w/o SCT censorin g	with SCT censorin g	
All patients	787	92%	5.5%	30.5%	17%	12%	52%
Patients aged 18-24y	200	98.5%	0.5%	32.7%	7.6%	1.8%	60%
Patients aged 25-34y	172	95.3%	1.7%	29.4%	12.7%	6.4%	58%
Patients aged 35-44y	171	87.7%	7.6%	31.0%	15.0%	11.3%	54%
Patients aged 45-54y	151	89.4%	6.6%	26.7%	22.4%	16.7%	50%
Patients aged 55y+	93	79.6%	18.3%	33.0%	39.7%	38.4%	26%

Huguet, GRAALL. ASH abstract #762 . Blood 2016

15

ADULT ACUTE LYMPHOBLASTIC LEUKEMIA L-Asparaginase: Unique Toxicities

- Hypersensitivity
 - · Neutralizing antibodies
- Liver dysfunction
 - Elevation liver enzymes and bilirubin
 - Low serum albumin
- Hemostasis
 - · Bleeding: low clotting factors
 - · Clotting: low anti-thrombin III, protein S
- Pancreatitis
- · Diabetes mellitus
- Neurological (lethargy, somnolence)

MINIMAL RESIDUAL DISEASE (MRD) Detection Definitions

- Methods
 - Multicolor flow cytometry
 - PCR (polymerase chain reaction)
 - Fusion transcripts
 - Rearranged immunoglobulin & T-cell receptor genes
- Children
 - At CR: MRD <0.01%—excellent outcome
 - After CR: MRD >0.1%—high risk of relapse
- Adults
 - Need to define levels of MRD at different time points that will define prognostic groups

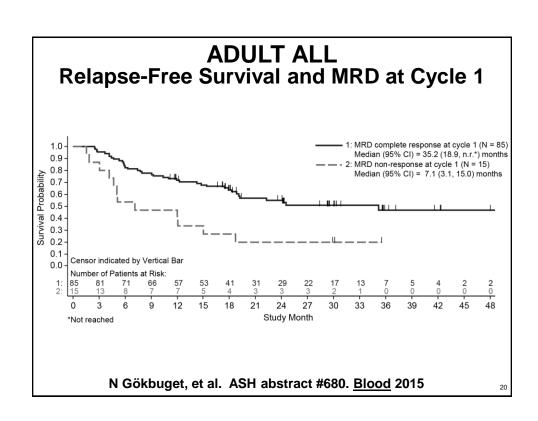
CH Pui, WE Evans. N Engl J Med 354: 166-78, 2006

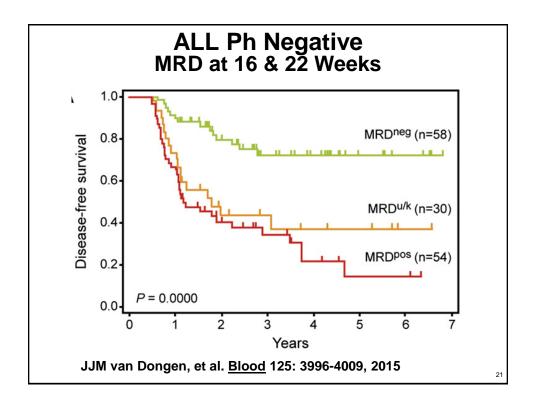
MINIMAL RESIDUAL DISEASE (MRD) Early Detection

196 patients "standard risk"

MRD measurement at multiple time points

Two clear-cut prognostic groups:


Day 11 and 24
MRD less than 10⁻⁴


Week 16 MRD ≥10⁻⁴

No relapse at 3 yr

94% relapse at 3 yr

M Brüggemann, GMALL: Blood 120:4470-4481, 2012

ALL Ph NEGATIVE Recommendations

- Up to age 35-45 (? 55) yr, enroll on peds intensity regimen
- Consider hematopoietic cell transplant (HCT) for high risk
- Age 45-55 yr consider HCT ? using reduced-intensity conditioning (RIC)
- Age > 55 yr, chemotherapy but consider RIC if fit

"Could ALL be a setting where more older than younger patients are treated with BMT?"

Tony Goldstone

Philadelphia Chromosome ALL Distinguishing Features Ph+ ALL

- Precursor B cell (PBC) with t(9;22); bcr/abl translocation
- · Incidence continuously increases with age
 - rare in children; 50% in ages >55 yr
- Historically very poor outcome
 - No cure with intensive ALL chemotherapy in all ages
 - Cure historically only by HCT but at lower rate than other ALL subtypes
 - Now ? better results with chemotherapy + TKI
- · Active clinical investigations:
 - Is chemotherapy still needed?
 - Does allogeneic transplant remain an imperative?

23

Philadelphia Chromosome ALL Tyrosine Kinase Inhibitor (TKI) Use

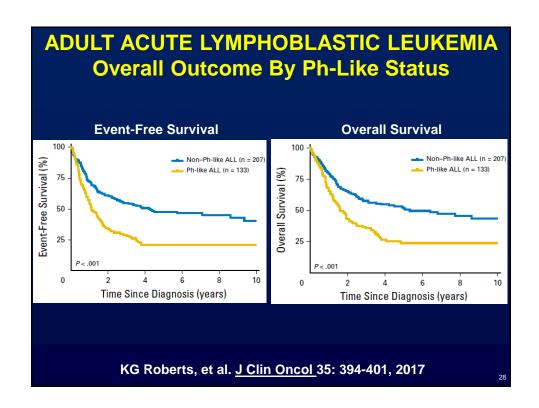
- For newly diagnosed patients: no clear preference
- Some of best long term data with Imatinib
- Dasatinib often used; better CNS penetrance
- · Recent data suggest Nilotinib at least good as Dasatinib
- · Ponatinib intriguing but needs to be demonstrate
- Bosutinib retains best toxicity profile, but few data

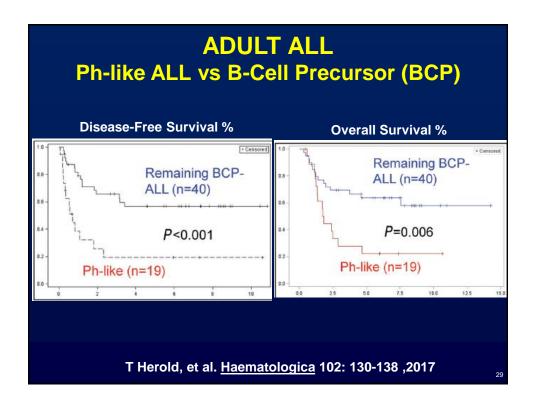
Philadelphia Chromosome ALL Tyrosine Kinase Inhibitor (TKI) Use

- Until proven otherwise in controlled, prospective trials: TKI-based induction and allogeneic HCT remains standard of care for long-term survival
- Some corticosteroid/TKI combinations can give 100% CR rates, but as yet no long-term data to support omitting chemotherapy
- National trials soon to be underway

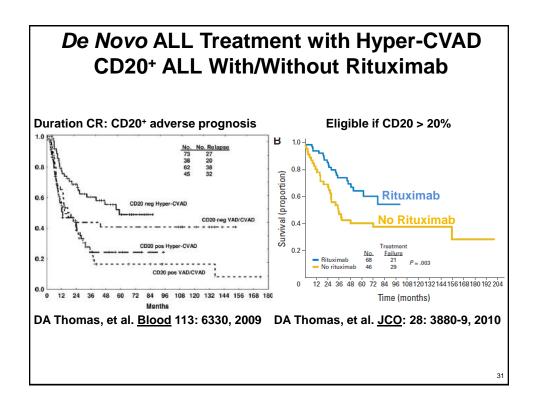
25

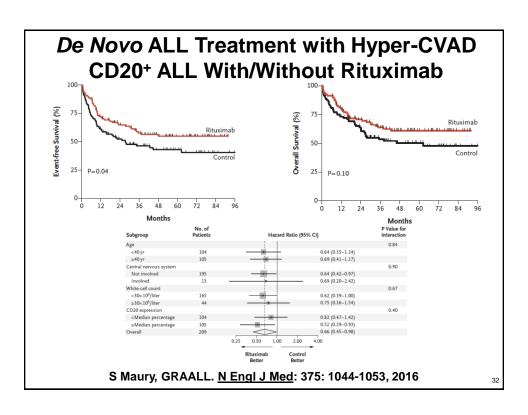
ALL Ph-Like Issues: High-Risk B-Lineage ALL


- No BCR-ABL1 fusion protein from t(9;22)(q34;q11.2) but gene-expression profile similar
- · More frequent in males and also Hispanic ethnicity
- · Difficult diagnosis: need specialized laboratories
- Strong association with IKAROS (IKZF1) deletions
- Numerous genetic aberrations that share specific activated kinase gene expression pattern: "kinase driven"
- Age 21-39 yr 27.9% 40-59 yr - 20.4% 60-86 yr - 24.0%
- High expression (~40-50%) of cytokine receptor-like factor 2 (CRLF2) and concomitant JAK1 or JAK2 mutation (>50% among patients with CRLF2 rearrangement)


Y Ofran, S Izraeli. <u>Blood Reviews</u> 2016 KG Roberts, et al. <u>J Clin Oncol</u> 35: 394-401, 2017

ALL Ph-Like Issues: High-Risk B-Lineage ALL (con't)


- Most attain morphologic CR; but only 35% MRD neg
- Most important: eradication of MRD as early as possible
- Approach with targeted therapies:
- Add TKI (dasatinib) to Ph-like ALL with abnI ABL activation
- Add JAK inhibitors (ruxolitinib) to JAK-STAT derived ALL
- JAK inhibition alone (momelotinib & ruxolitinib) not good strategy:
 - Preclinical mouse data demonstrated clonal heterogeneity, outgrowth of resistant clones
- · Mostly small studies; definitive studies awaited
- Frontline trials combining targeted kinase inhibitor + chemotherapy have been initiated

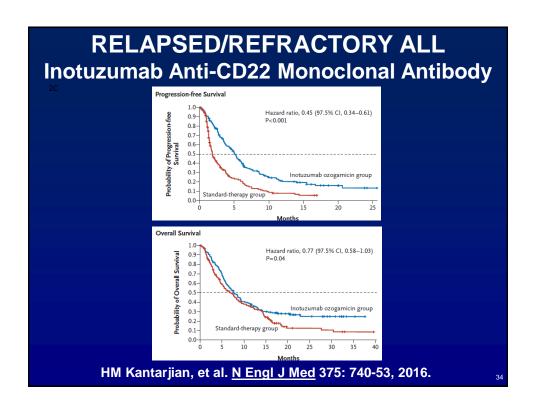

EMP Steeghs, et al. ASH 2016 Abstract #583. Blood 2016

Surface antigen	ALL subtype	Antigen Expression for Targeted Therapy	Monoclonal Antibody
CD20	B-precursor	40%	Rituximab
CD22	B-precursor	95%	Epratuzumab Moxetumomab Pasudotox (HA22) Inotuzumab Ozogamicin
CD52	B-precursor T-precursor	80% 80%	Alemtuzumab
CD19	B-precursor	95-100% high density	Blinatumomab Bispecific (BiTE)

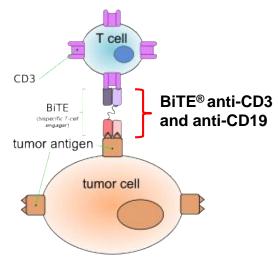
RELAPSED/REFRACTORY ALL Inotuzumab Anti-CD22 Monoclonal Antibody

CD22 expressed on >90% B cell lymphoid malignant cells
CD22 internalized upon antibody binding; not shed into the
extracellular environment: conjugated to calicheamicin
Phase 3 inotuzumab vs standard intensive therapy (N=326)

CR: Inotuzumab ozogamicin (Ino) 81% vs chemotherapy 30%


MRD <0.01% marrow blasts: Ino 78% vs chemo 28%

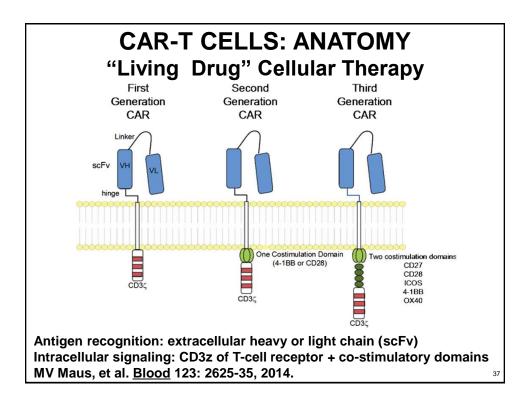
CR median duration: Ino 4.6 mo vs chemo 3.1 mo


PFS: Ino 5 mo vs chemo 1.8 mo; OS Ino 7.7 mo vs chemo 6.7

Hepatic veno-occlusive disease: Ino 11% vs chemo 1%

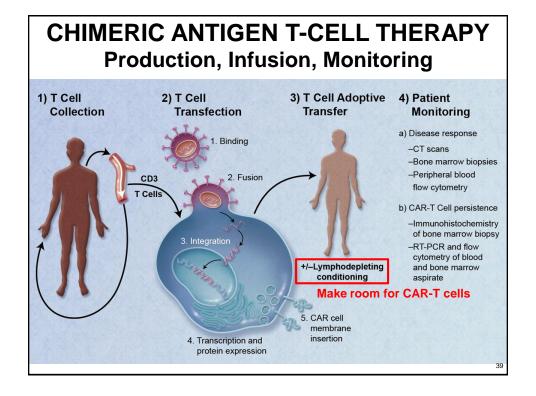
HM Kantarjian, et al. N Engl J Med 375: 740-53, 2016.

Mode of Action of Blinatumomab Bispecific T-Cell Engager (BiTE®) Antibody


Directs cytotoxic T-cells to CD19 expressing cancer cells R Bargou, et al. Science 321 (5891): 974-7, 2008

35

ADULT ALL B-CELL PRECURSOR Blinatumumab for MRD Positive Disease


- Adults ≥18 years in morphologic CR (<5% blasts in bone marrow) after ≥3 chemotherapy but MRD ≥10⁻³ were eligible
- Blinatumomab 15 µg/m²/d cont IV x 4 wk: 4 cycles or HCT
- N=116; median age 45 (18-76) yr; 1/3 >CR2
- 80% complete MRD response after 1-2 cycles
- Monitor for potential toxicities:
- · Cytokine release syndrome: flu-like, with fever and myalgia
- More severe: vascular leak, hypotension, pulmonary edema, coagulopathy, multi-organ system failure
- Neutropenia, lymphopenia, hypogammaglobulinemia
- CNS dysfunction

N Gökbuget, et al. ASH abstract #680. Blood 2015

Why CAR-T Cells?

- · Best of both worlds of the immune system
 - Modify T cell to have anti-B cell specificity
 - T cell cytotoxicity without presentation
- Form of Adoptive T Cell Therapy
- Synthetically engineered receptors designed to overcome immune tolerance / tumor evasion
- Targets surface molecules in native confirmation
- Engage target <u>independent</u> of antigen presenting cell (APC) and MHC complex
- Trials conducted in relapsed/refractory patients

CAR-T CELL THERAPY Complications

Cytokine Release Syndrome (CRS)

- Typically within 5 days of infusion and CRP best predictor
- Due to exponential T cell proliferation
- · Leads to out-pouring IL-2, IL-6, IFN
- Get macrophage activation syndrome, shock, organ failure
- Stress cardiomyopathy: Takotsubo cardiomyopathy
- Treat with anti-IL-6 monoclonal antibodies (Tocilizumab) and dexamethasone
- Recent data: Efficacy, engraftment & persistence CAR-T not impacted by when given early after onset of CRS

SL Maude, et al. <u>Blood</u> 125: 4017-23, 2015. DW Lee, et al. <u>Blood</u> 124: 188–195, 2014. R Gardner, et al. ASH abstract #587. Blood 2016

CAR T CELL THERAPY Complications (con't)

- Allergy/anaphylaxis
 - Immune response to mouse- or recombinant- proteins
- · B Cell aplasia
 - No circulating B cells by flow cytometry; persists to 1 yr
 - Immunoglobulin replacement: keep serum lg > 500
- Neurologic deficits: delirium, aphasia, seizures, encephalopathy
 - Unclear pathogenesis and self-limited
 - No long term complications
 - CAR-T cells in CSF in all patients

SL Maude, et al. <u>Blood</u> 125: 4017-23, 2015 and <u>N Engl J Med</u> 371: 1507-17, 2014 DW Lee, et al. <u>Blood</u> 124: 188–195, 2014.

RELAPSED B-ALL Anti-CD19 CAR T Cell Therapy					
T cell Engager	Population	Response			
Anti-CD19 CART 4-1BB	N=30 Peds & Adults	CR=90%			
Anti-CD19 CART CD28	N=16 Adults	CR=88%			
Anti-CD19 CART CD28	N=21 Peds & AYA	CR=67%			
Anti-CD19 CART 4-1BB	N=30 Adults	CR=93%			
	T cell Engager Anti-CD19 CART 4-1BB Anti-CD19 CART CD28 Anti-CD19 CART CD28 Anti-CD19 Anti-CD19	T cell Engager Population Anti-CD19 N=30 CART 4-1BB Peds & Adults Anti-CD19 N=16 CART CD28 Adults Anti-CD19 N=21 CART CD28 Peds & AYA Anti-CD19 N=30			

ALL CTL019 CAR-T THERAPY Broader Access: ELIANA Study

First global multi-center CAR-T cell (registration) trial

Industrial cell processing of CTL019 therapy: US mtg and global supply

Adolescent-young adult relapsed/refractory ALL: BM ≥5% lymphoblasts

Exclusions: Isolated extra-medullary disease relapse; prior anti-CD19 or anti-CD3 therapy; prior gene therapy

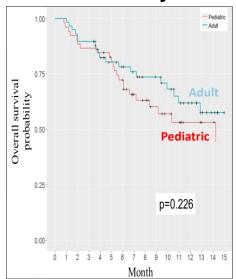
CR/CRi in 82%; durable CRs; all CRs were MRD-negative

Most eligible pts got CTL019 ~ 94% success central mfg

Manageable toxicities; no deaths due to cytokine release syndrome (CRS)

SA Grupp, et al. ASH abstract #221. Blood 2016

43

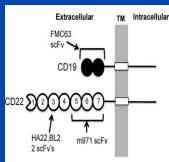

ALL LV-4SCAR19 CAR-T THERAPY Broader Access: Chinese Study

LV-4SCAR19: 4th generation CAR

Chinese multisite study; 30 centers

110 pts (58 kids; 52 adults)

CR 87%; median survival 222d


L-J Chang, et al. ASH abstract #587. Blood 2016

ACUTE LYMPHOBLASTIC LEUKEMIA Anti-CD22 CAR T cells

Rationale: anti-CD19 CAR highly effective but CD19relapses occur

CD22: B-lineage restricted antigen; promising target for mmunotherapy

- Example: Inotuzumab ozogamicin
- Anti-CD22 CAR-T
 - Utilizes m971 anti-CD22 scFv
 - 4-1BB/CD3-zeta signaling

W Haso, et al. Blood 121: 1165-1174, 2013.

45 ©2016 MFMER | 3546961-4

ACUTE LYMPHOBLASTIC LEUKEMIA Healthcare Team Issues

- Open discussions throughout
- Immediate, short-term
 - Side effect prevention and management
 - Vigorous supportive care: medical and emotional
 - Anti-emetics, antibiotics, transfusions, electrolytes
 - Physical therapy, exercise
- Intermediate- and long-term
 - Transplantation
 - Second malignancy, osteoporosis, endocrine & sexual dysfunction, fertility, cognitive dysfunction, cardiovascular disease

ACUTE LYMPHOBLASTIC LEUKEMIA The Future

- MRD evaluation standard of care for all ALL
- · Fewer allografts in younger adults, more in older
- Blinatumomab incorporation into 1st line therapy for both Ph-negative and Ph-positive
- Blinatumomab use in relapse as bridge to HCT
- Using TKI and blinatumomab, less Ph⁺ pts referred for allogeneic HCT
- Increased use CAR-T, in tandem with reduced procedural-morbidity – confined mostly to relapsed disease or very high risk

47

Treating Adult Acute
Lymphoblastic Leukemia (ALL)

Q&A Session

Ask a question by phone:

• Press star (*) then the number 1 on your keypad.

Ask a question by web:

- · Click "Ask a question"
- Type your question
- · Click "Submit"

Due to time constraints, we can only take one question per person. Once you've asked your question, the operator will transfer you back into the audience line.

LEUKEMIA & LYMPHOMA someday **Treating Adult Acute** is today Lymphoblastic Leukemia (ALL) SOCIETY* fighting blood cancers SUPPORT RESOURCES Online chats: Online moderated chat forums: www.LLS.org/chat What to ask: Questions to ask your treatment team: www.LLS.org/whattoask Free education materials: www.LLS.org/booklets Past ALL education programs: www.LLS.org/programs Information Resource Center: Speak one-on-one with an Information Specialist who can assist you through cancer treatment, financial, and social challenges. EMAIL: infocenter@LLS.org **TOLL-FREE PHONE: (800) 955-4572**