Welcome and Introductions

Sagar Lonial, MD, FACP

Professor and Executive Vice Chair
Department of Hematology and Medical Oncology
Chief Medical Officer
Winship Cancer Institute
Emory University School of Medicine
Atlanta, GA
Multiple Myeloma (MM)

- Prevalence
 - 20,180 estimated new cases in the U.S. in 2010
 - Median age at diagnosis: 70 years
 - Median survival
 - 3 years conventional therapy
 - 4–5 years high-dose therapy
 - >10,000 patients with MM die each year in the U.S.
- Population subgroups
 - Incidence is twice as high in African Americans
 - More frequent in men than in women
 - Long-term disease control is possible in a fraction of patients

Multiple Myeloma – Description

- Characterized by a plasma cell dyscrasia producing a monoclonal immunoglobulin
- Proliferation often results in extensive skeletal destruction (e.g., osteolytic lesions, hypercalcemia, anemia)
- Excess production of M protein can result in renal failure, hyperviscosity syndrome, recurrent bacterial infections, and hematopoietic and immune dysfunction

Myeloma Cells
The Immunoglobulin Molecule

- B-cell final product is immunoglobulin (Ig)
- Ig is key piece of immune function
- B cells are stimulated by T cells as well as APCs
M Protein Analysis

Criteria for Diagnosis of Myeloma

MGUS
- <3 g M spike
- <10% plasma cells

SMM
- ≥3 g M spike
- ≥10% plasma cells

Active MM
- ≥10% plasma cells
- M spike +

AND

No anemia, bone lesions, normal calcium, or kidney function

AND

Anemia, bone lesions, high calcium, or abnormal kidney function

MGUS, monoclonal gammopathy of unknown significance; SMM, smoldering multiple myeloma.

Smoldering Multiple Myeloma (SMM)

- 27% will convert in 15 years
 - Roughly 2% per year
- 40% will convert in 4 years
 - Roughly 10% per year

Free Light Is Useful for Risk Assessment in SMM

Table 3. Multivariate analysis of prognostic factors for progression of SMM to myeloma and related disorders

<table>
<thead>
<tr>
<th>Prognostic factor</th>
<th>Hazard ratio (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow plasma cells more than 10%</td>
<td>3.1 (1.8-6.3)</td>
<td><.01</td>
</tr>
<tr>
<td>Abnormal FLC ratio less than 0.126 or more than 8</td>
<td>1.9 (1.3-2.7)</td>
<td><.01</td>
</tr>
<tr>
<td>Serum M protein size, more than 30 g/L</td>
<td>1.9 (1.4-2.6)</td>
<td><.01</td>
</tr>
</tbody>
</table>
Updated IMWG Criteria for Diagnosis of Multiple Myeloma

MGUS
- M protein <3 g/dL
- Clonal plasma cells in BM <10%
- No myeloma defining events

SMM
- M protein ≥3 g/dL (serum) or ≥500 mg/24 hours (urine)
- Clonal plasma cells in BM ≥10%–60%
- No myeloma defining events

Multiple Myeloma
- Underlying plasma cell proliferative disorder
- AND 1 or more myeloma defining events
- ≥1 CRAB* feature
- Clonal plasma cells in BM ≥60%
- Serum free light chain ratio ≥100
- >1 MRI focal lesion

*C: Calcium elevation (>11 mg/dL or >1 mg/dL higher than upper limit of normal)
*R: Renal insufficiency (creatinine clearance <40 mL/min or serum creatinine >2 mg/dL)
*A: Anemia (hemoglobin <10 g/dL or 2 g/dL < normal)
*B: Bone disease (≥1 lytic lesions on skeletal radiography, CT, or PET-CT)

BM, bone marrow; CT, computed tomography; IMWG, International Myeloma Working Group; PET, positron emission tomography.

Improving Survival in MM

- The use of high-dose therapy (HDT) or melphalan-based novel agent induction therapy has doubled median survival for nearly all patients

13

14
Goals of Induction Therapy

- Achieving maximal response
 - \(\geq \) Very good partial response (VGPR) vs complete response (CR) vs minimal residual disease (MRD)
- High response rate; rapid response
- Improve performance status
- Minimize negative effects on quality of life
- Not limit PBSC mobilization (for younger patients)
 - Do goals depend on cytogenetics and/or prognostic factors?
 - Is CR the main endpoint?

PBSC, peripheral blood hematopoietic stem cell.

Benefit Associated With CR

IFX- CR in young patients
- N=635
- EFS
- IFX- CR in elderly patients
- N=1175
- PFS
- OS

MRD- CR in young patients
- N=147
- EFS
- OS

EFS, event-free survival; IFX-, immunofixation negative; MRD-, minimal residual disease negative; OS, overall survival; PFS, progression-free survival.

MRD negative
- Median : 71 mo
- P = 0.009
- 59%
- 87%

MRD positive
- Median : 37 mo
- P < 0.001
- 30%
- 62%
3 Drugs Are Better Than 2

Factors That Influence Improved Outcomes

- Better induction
- Increasing role of maintenance
- Longer duration of therapy
- Increased use of HDT

Better Drugs

Better Depth of Response
Transplant in Era of Novel Agents: Survival Benefit Continues

Getting to MRD: New Definitions for CR

S.S. Patient

Disease burden

Newly diagnosed 1×10^{12}

CR 1×10^8

Stringent CR

Molecular/Flow CR 1×10^4

?-Cure? 0.0

Bortezomib Lenalidomide Antibodies
What Happens When the Best Are Combined?

RVD Induction ➔ HDT ➔ RVD Consolidation ➔ Lenalidomide Maintenance

Current Considerations for Initial Treatment of MM

➢ Induction for younger patients
 - 3-drug induction followed by autologous transplant and consolidation in first response¹
 - Maintenance therapy post-autologous transplant²
 - Maximize duration of first response³,⁴
 - Assessing depth of response and understanding implications for patient outcomes⁵

Recommendations for Salvage Therapy in Multiple Myeloma

Preferred Regimens

- **NCCN Category 1**
 - Bortezomib
 - Bortezomib + PLD
 - Lenalidomide + dexamethasone (RD)

- **NCCN Category 2A**
 - Repeat induction if relapse >6 months
 - Bortezomib + dexamethasone (VD)
 - Lenalidomide + bortezomib + dexamethasone (RVD)
 - Carfilzomib
 - Cyclophosphamide + VD, or RD
 - HD cyclophosphamide
 - DCEP
 - DT-PACE ± bortezomib
 - Pomalidomide/dexamethasone
 - Thalidomide + dexamethasone (TD) ± bortezomib

Other Regimens

- **NCCN Category 2A**
 - Bendamustine
 - Bortezomib + vorinostat
 - Lenalidomide + bendamustine + dexamethasone

DCEP, dexamethasone/cyclophosphamide/etoposide/cisplatin; DT-PACE, dexamethasone/thalidomide/cisplatin/doxorubicin/cyclophosphamide/etoposide; NCCN, National Comprehensive Cancer Network; PLD, pegylated liposomal doxorubicin.

Questions in the Relapsed Setting

- Is 3 better than 2 in early relapse?
- Is 2 more than enough in late relapse?
- How do we choose among salvage treatments in early relapse (proteasome inhibitor vs immunomodulatory drug based)?
Selecting Salvage Therapy: General Principles1,2

- Patients with indolent disease, first relapse:
 - Bortezomib or lenalidomide, depending on response to and composition of initial treatment, presence of renal dysfunction, or underlying peripheral neuropathy
 - Watch and wait for low-level M protein (0.2/0.3)

- Patients with aggressive disease, rapid progression, multi-relapse:
 - Combination therapy preferred; do not wait for symptomatic relapse
 - Combinations of novel agents with chemotherapy/dexamethasone an option

- Patients who relapse from non-SCT treatment or Patients with long duration of benefit from first SCT or Patients in whom response likely to be short lived:
 - Transplant-based salvage therapy a potential option in eligible patients
 - New additions: carfilzomib, pomalidomide
 - Emerging agents: elotuzumab, ixazomib, panobinostat

Drugs in Relapse

- Proteasome inhibitors
 - Bortezomib, carfilzomib, MLN 9708, oprozomib

- Immunomodulatory drugs (IMiDs)
 - Lenalidomide, pomalidomide

- Histone deacetylase (HDAC) inhibitors
 - Panobinostat, Acy-2115

- Antibodies
 - Elotuzumab, daratumumab

- Other
 - KSP, CDK, KPT

Tao of Myeloma Therapy: Mutations Are Not Everything

Tamoxifen
Androgen Ablation

“Normal” Cell Biology

Proteasome Inhibitors
IMiDs?

“Tumor” Cell Biology

Melphanal
Doxil

IMiDs?
Anti-DKK1?

FGFR3 Inhibitors

BRAF inhibitors?

Need to Define Targeting Plasma Cell Biology and Targeting Proliferation

 Targets for Monoclonal Antibodies

Figure 1

CD229
CD200
CD23
CD13

CD138

IL-6
Siloximab

BAP
Tabalumab

APRD

MM cell

In clinical development
Preclinical activity
Potential targets
Daratumumab Response

Lokhorst et al. ASCO. 2013.

Elotuzumab Background

Elotuzumab is a humanized IgG1 mAb targeting human CS1, a cell surface glycoprotein. CS1 is highly expressed on >95% of MM cells - Lower expression on NK cells - Little to no expression on normal tissues

Elotuzumab is believed to work primarily through NK cell-mediated ADCC against myeloma cells

In a MM xenograft mouse model, the combination of elotuzumab + lenalidomide significantly reduced tumor volume compared with either agent alone

ADCC, antibody-dependent cellular cytotoxicity; mAb, monoclonal antibody; NK, natural killer.

Progression-Free Survival (PFS) From the Phase II Cohort

- In the 10-mg/kg cohort, median PFS was 33 months
- In the 20-mg/kg cohort, the median PFS was 18 months

Safety Summary: IMiDs in 2014

Thalidomide
- Neuropathy
- DVT
- Myelosuppression
- Rash

Lenalidomide
- DVT
- Myelosuppression
- Rash

Pomalidomide
- Neutropenia at ↑ doses
- DVT

DVT, deep vein thrombosis.
Managing Myelosuppression With IMiDs

- Myelosuppression associated with IMiDs requires early recognition and management to avoid infections and treatment interruption

<table>
<thead>
<tr>
<th>Neutropenia Management in Myeloma Patients Receiving Pomalidomide¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>When Neutrophils Fall to <500/mcL or FN (fever ≥38.5°C and ANC <1,000/mcL)</td>
</tr>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>ANC return to ≥500 per mcL</td>
</tr>
<tr>
<td>For each subsequent drop to <500/mcL</td>
</tr>
<tr>
<td>Return to ≥500/mcL</td>
</tr>
</tbody>
</table>

ANC, absolute neutrophil count; CBC, complete blood count; FN, febrile neutropenia.

Thrombosis in Myeloma: Risk Factors and Prevention¹

<table>
<thead>
<tr>
<th>Individual Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>History of VTE</td>
</tr>
<tr>
<td>Central venous catheter</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Infection</td>
</tr>
<tr>
<td>Cardiac disease</td>
</tr>
<tr>
<td>Immobilization</td>
</tr>
<tr>
<td>Surgery</td>
</tr>
<tr>
<td>Inherited thrombophilia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloma-Related Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
</tr>
<tr>
<td>Hyperviscosity</td>
</tr>
</tbody>
</table>

0 or 1 individual risk factor present: once-daily aspirin

≥2 individual or myeloma-related risk factors: LMWH (once-daily enoxaparin) or full-dose warfarin

LMWH, low-molecular-weight heparin; VTE, venous thromboembolism.

Thrombosis in Myeloma: Risk Factors and Prevention (Cont’d)

Therapy-Related Risk Factors

- High-dose dexamethasone
- Doxorubicin
- Chemotherapy with thalidomide or lenalidomide (likely with all IMiDs)

- LMWH or full-dose warfarin regardless of additional risk factors

- In low-risk patients receiving lenalidomide, aspirin appears to be effective thromboprophylaxis

Other Important Safety/Adjunctive Issues

<table>
<thead>
<tr>
<th>When Neutrophils</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone protective therapy¹</td>
<td>Bisphosphonates recommended for all patients with myeloma receiving primary therapy</td>
</tr>
<tr>
<td>Hydration</td>
<td>Assess patient for dehydration, counsel on fluid intake, and intervene aggressively to correct</td>
</tr>
<tr>
<td>GI/Nutritional issues associated with steroids</td>
<td>Caution: overzealous hydration may lead to hyponatremia</td>
</tr>
<tr>
<td></td>
<td>Counsel patients on maintaining weight</td>
</tr>
<tr>
<td></td>
<td>Fruit/vegetable-rich diet</td>
</tr>
<tr>
<td></td>
<td>Protein intake, avoid concentrated sweets and carbohydrates</td>
</tr>
</tbody>
</table>

GI, gastrointestinal.

Discussion: Speaking With the Patient About Adverse Events

In collaboration with nurse professional...

• Discuss the potential for toxicity such as peripheral neuropathy or myelosuppression when combining proteasome inhibitors with IMiDs

• Discuss options for thromboprophylaxis with IMiDs

• Antibiotic prophylaxis with proteasome inhibitors
 – Possibly for all patients with myeloma

• Recommend/educate the patient on nonpharmacologic strategies for adverse events/symptoms

PETHEMA Cure With Old Drugs: What About All the Clones?

![Figure 2](image)

Functional cure?

Conclusions

- Defining symptomatic MM is in evolution
- Aggressive therapy continues to require aggressive induction (3 drugs) and consolidation with transplant and maintenance
- Options in relapse are increasing and, for now, are not used based on a biomarker
- Immune therapy is on the way!

Thanks to:
Jonathan Kaufman
Ajay Nooka
Charise Gleason
Danni Cassabourne
Melanie Watson
L.T. Heffner
Donald Harvey
Colleen Lewis
Amelia Langston
Claire Torre
Y. Gu
S-Y Sun
Jing Chen
Fadlo Khuri
Anand Jillella
Leon Bernal
Larry Boise
Cathy Sharp
Kenisha Baron
And the Clinical Research Team

IMS

sloni01@emory.edu

Patients and Families

Golfers Against Cancer
T.J. Martell Foundation
and many others who are part of the B-cell Team

IMS
Question-&-Answer Session

The speaker’s slides are available for download at www.LLS.org/programs

The Leukemia & Lymphoma Society (LLS) offers:

- Live, weekly Online Chats are moderated by an oncology social worker and provide a friendly forum to share experiences.
 - WEBSITE: www.LLS.org/chat

- Co-Pay Assistance Program offers financial assistance to qualified cancer patients to help with treatment-related expenses and insurance premiums. Patients may apply online or over the phone with a Co-Pay Specialist.
 - WEBSITE: www.LLS.org/copay
 - TOLL-FREE PHONE: (877) LLS-COPAY

- For more information about blood cancers and other LLS programs, please contact an LLS Information Specialist.
 - TOLL-FREE PHONE: (800) 955-4572
 - EMAIL: infocenter@LLS.org