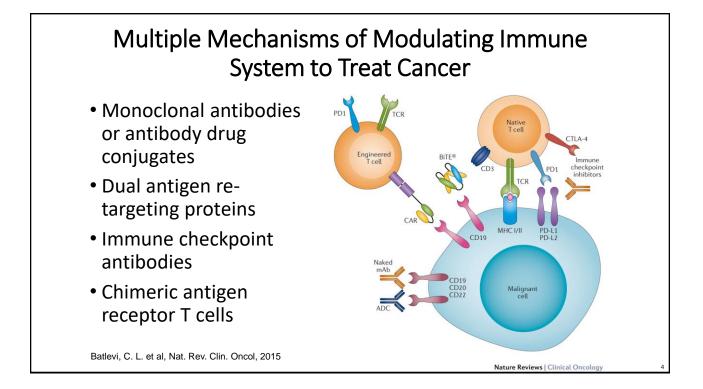
BEATING CANCER IS IN OUR BLOOD.

ADVANCES IN CAR T-CELL THERAPY

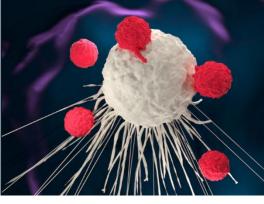
Iris Isufi, MD

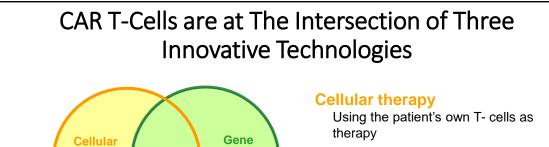
Co-Director, Adult CAR T-Cell Therapy Program Yale Cancer Center/Smilow Cancer Hospital Assistant Professor, Medicine Yale University School of Medicine New Haven, CT

DISCLOSURES Advances in CAR T-cell Therapy


Iris Isufi, MD, has affiliations with Astra Zeneca, Celgene, Kite Pharmaceuticals and Novartis (*Consultant*).

BEATING CANCER IS IN OUR BLOOD.


Objectives


- Why CAR T-cell (chimeric antigen receptor T-cell) therapy shows promise for blood cancers
- Approved and emerging CAR T-cell therapies
- Side effects of CAR T-cell therapy: what to expect
- The future of CAR T-cell therapy for blood cancer patients

What is CAR T-cell therapy?

CAR T-cell therapy is a type of cancer therapy that uses a patient's own modified white blood cells to kill cancer cells.

therapy

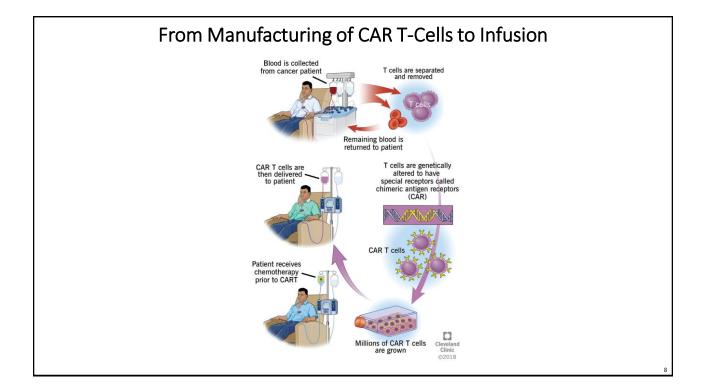
Immunotherapy

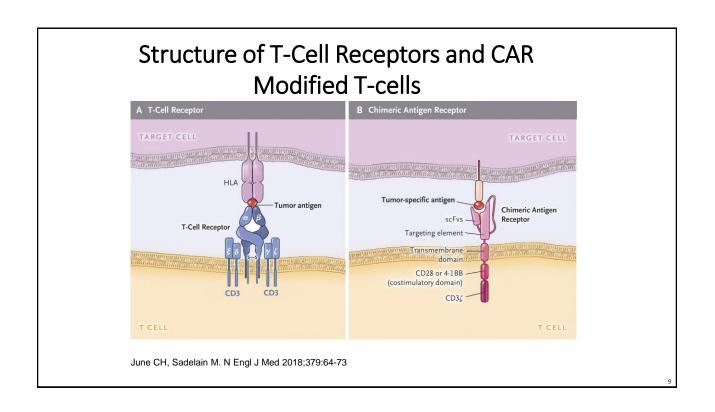
therapy

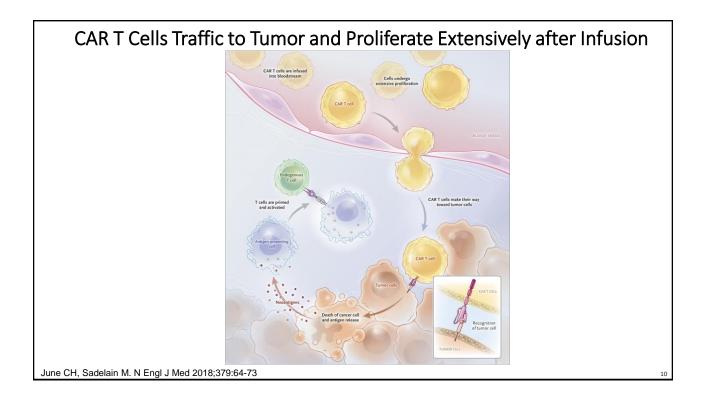
Gene therapy

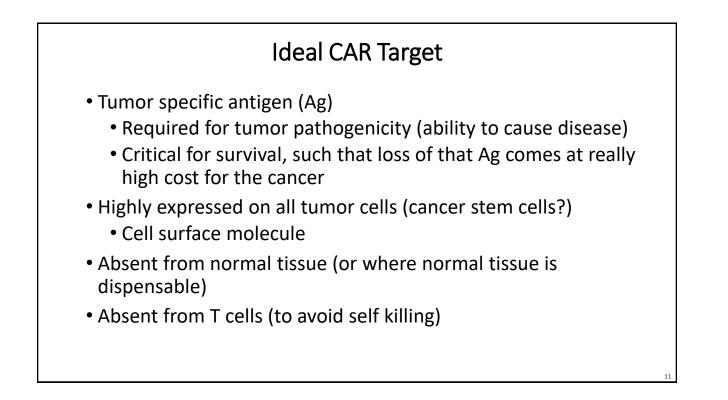
Insertion of genes into a patient's cells, thereby causing these cells to produce a new therapeutic protein (CAR)

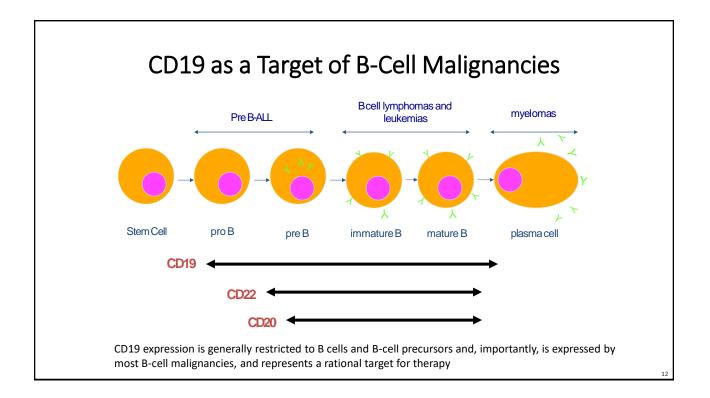
Immunotherapy

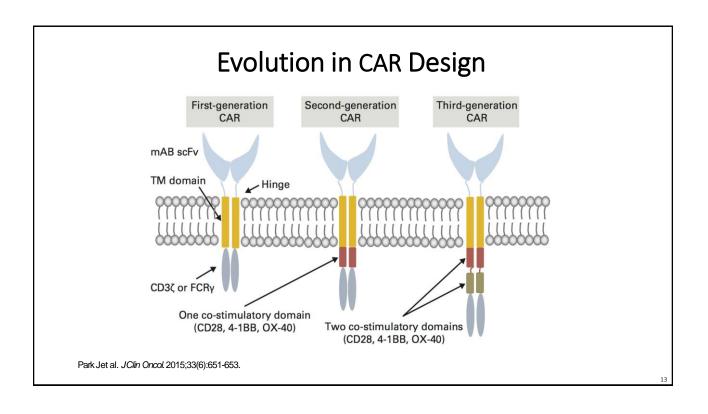

Harnessing the patient's own immune system (T- cells) to treat his/her disease

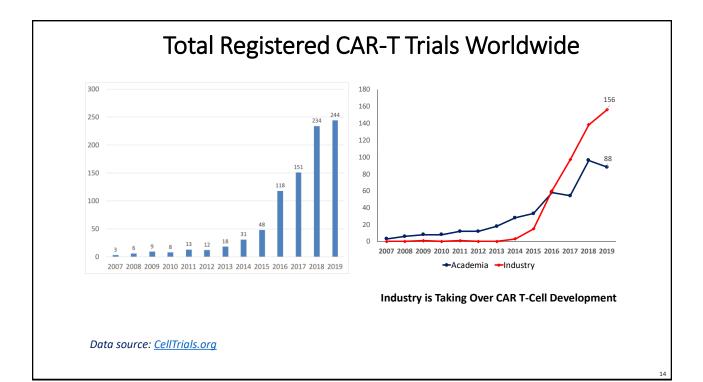

Tragedy, Perseverance, and Chance — The Story of CAR-T Therapy

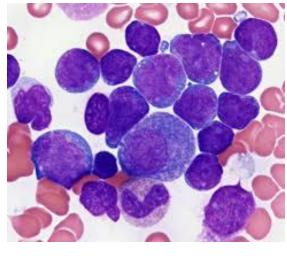

The emergence of CAR-T therapy, like most scientific advances, reflects the incremental insights of hundreds of scientists over decades. Indeed, the story of CAR-T therapy says as much about the methodical nature of scientific progress as it does about the passions that sustain it.

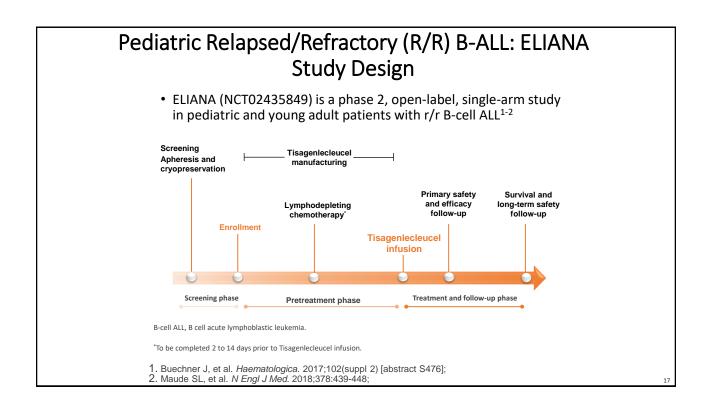

Lisa Rosenbaum, M.D.

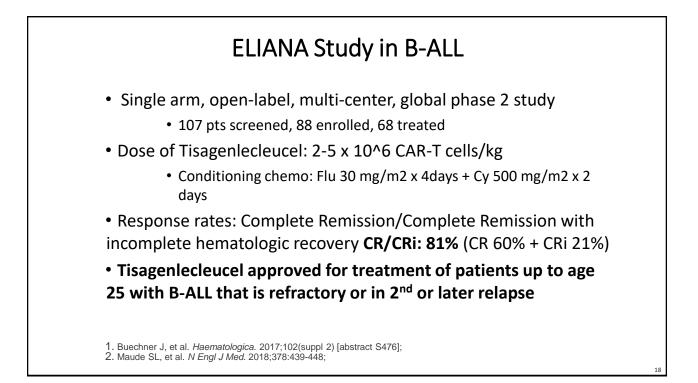

N Engl J Med 377;14 nejm.org October 5, 2017

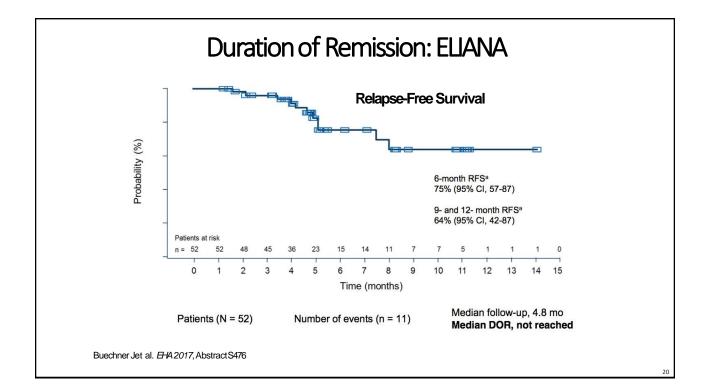


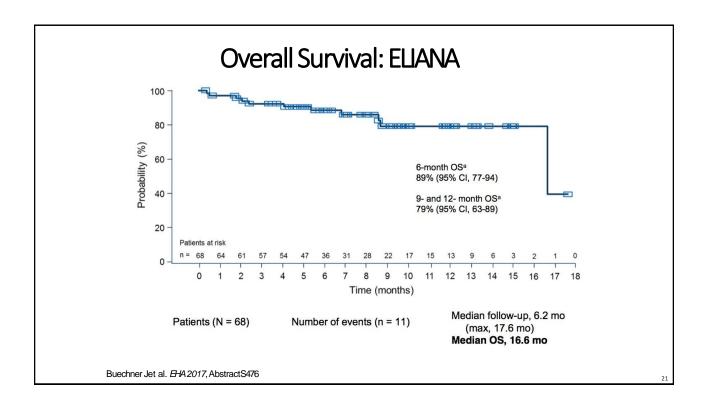




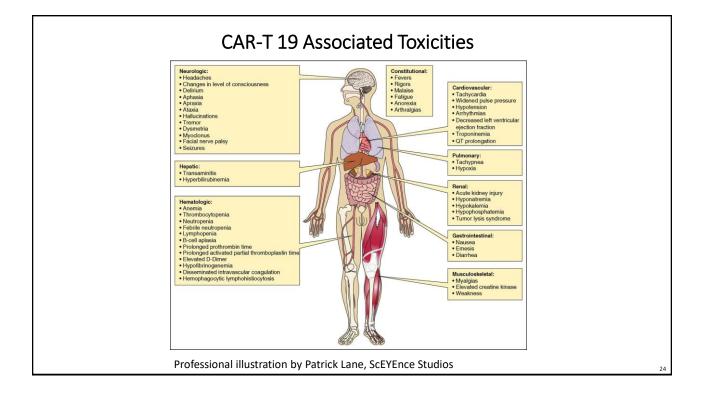



Drug name	Company	Indication	Target
	Market	ed	
Tisagenlecleucel (CTL-019)	Novartis	Childhood B-cell ALL (≤25) Adult DLBCL, transformed FL (tFL)	CD19
Axicabtagene ciloleucel (KTE-C19)	Gilead Sciences (Kite Pharma)	DLBCL, tFL and PMBCL	CD19
Brexucabtagene autoleucel (KTE-X19)	Gilead Sciences (Kite Pharma)		
	Phase I	11	•
Lisocabtagene maraleucel (JCAR 017)	Celgene (Juno Therapeutics)	B-NHL	CD19
Idecabtagene vicleucel (bb2121)	Bluebird bio/Celgene	Multiple myeloma	всма



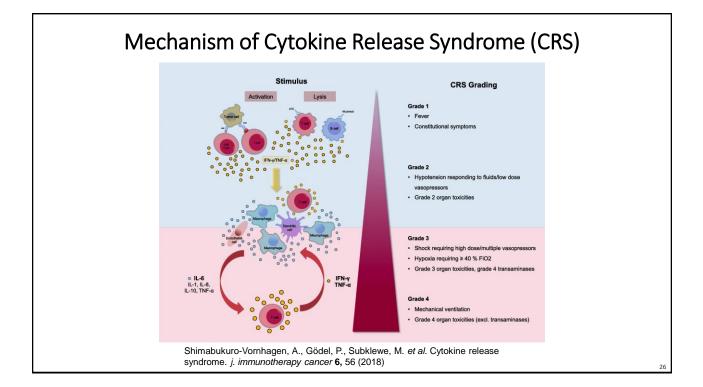

Atlas of Genetics and Cytogenetics in Oncology and Hematology

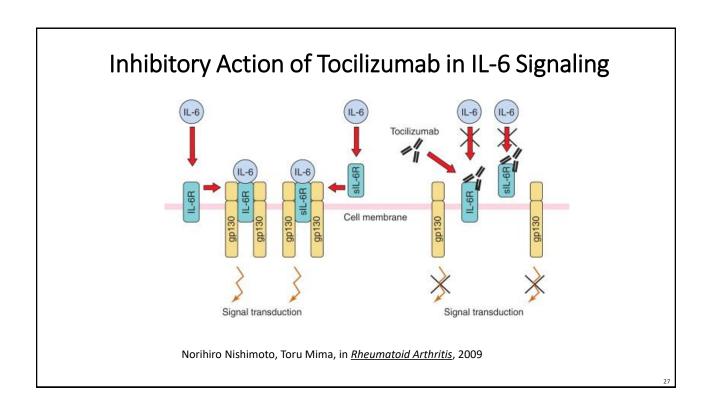
ELIANA: Patient Demographics and Baseline Clinical Characteristics				
Characteristics	Patients (N = 75)			
Age, median (range), years	11 (3-23)			
Prior stem cell transplant, n (%)	46 (61)			
Previous line of therapies, median (range), n	3 (1-8)			
Disease status, n (%)				
Primary refractory	6 (8)			
Chemo-refractory or relapsed	69 (92)			
Morphologic blast count in bone marrow, median (range), %	74 (5-99)			


ELIANA: Overall safety of Tisagenlecleucel

Event	Any Time (N=75)	>8 Wk to 1 Yr after Infusion (N=70)	
Adverse event of any grade	75 (100)	74 (99)	65 (93)
Suspected to be related to tisagenlecleucel	71 (95)	69 (92)	30 (43)
Grade 3 or 4 adverse event	66 (88)	62 (83)	31 (44)
Suspected to be related to tisagenlecleucel	55 (73)	52 (69)	12 (17)

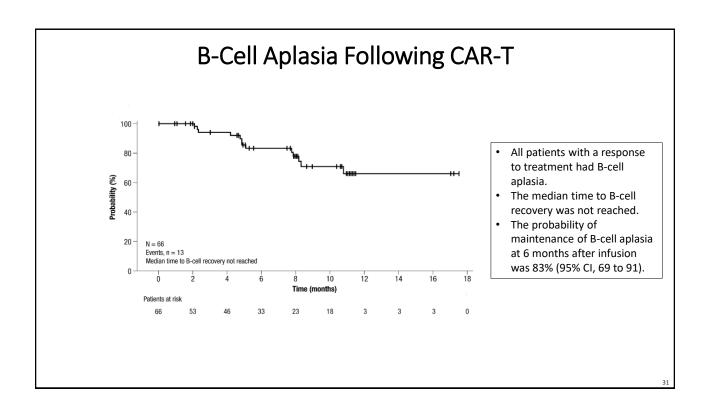
Maude SL, et al. N Engl J Med. 2018;378:439-448

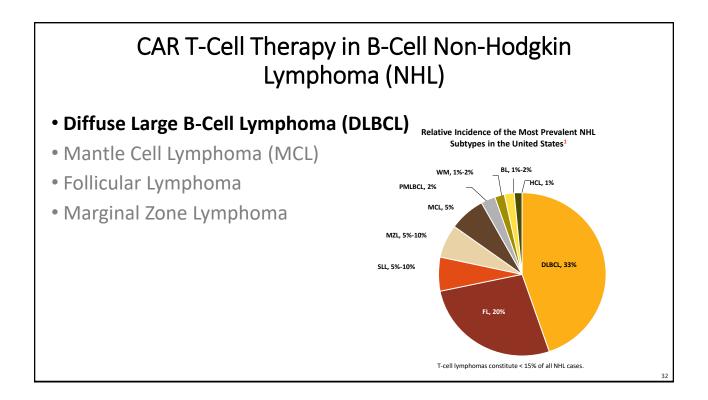

Outcomes with CART19 Therapy in Children and Adults with Relapsed/Refractory B-ALL


Reference	CAR	Population	Response
Maude et al. NEJM 2018	PENN 4-1BB	ALL (peds/adults) N=71	CR: 81% 6mo EFS & OS: 73% & 90% 12mo EFS & OS: 59% & 76% 11% proceeded to alloHSCT after CAR T cells
Park J et al. ASCO 2017, Abstract 7008	MSKCC CD28	ALL (adults) N=53	CR: 84.6% MRD-CR rate: 66.6% 39% proceeded to alloHSCT after CAR T cells.
Turtle et al. JCI 2016	Seattle 4-1BB Defined CD4/CD8 composition	ALL (adults) N=30	CR=93% MRD-CR rate: 86% 1 pt proceeded to alloHSCT after CAR T cells
Lee et al. Lancet 2015	NCI CD28	ALL (peds/adults) N=21	CR=67%

CAR-T 19 Associated Toxicities

- Cytokine Release syndrome (CRS)
 - Fevers, flu-like syndrome, low blood pressure, difficulty breathing
- Neurologic changes (NT, CRES, ICANS)
 - Headaches, tremors, mental status changes, difficulty speaking, rarely seizures (normal MRI)
- Organ toxicity (liver, kidneys)
- Off tumor/On target: B cell aplasia
 - Prolonged; Cases requiring IVIG repletion
- Toxicities are usually manageable and reversible



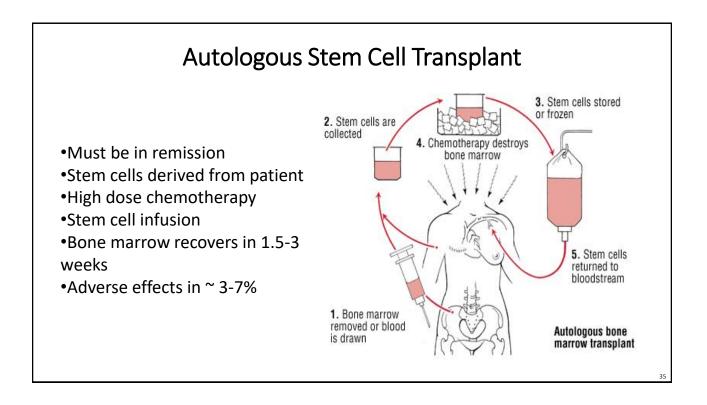

Mechanism of Neurotoxicity

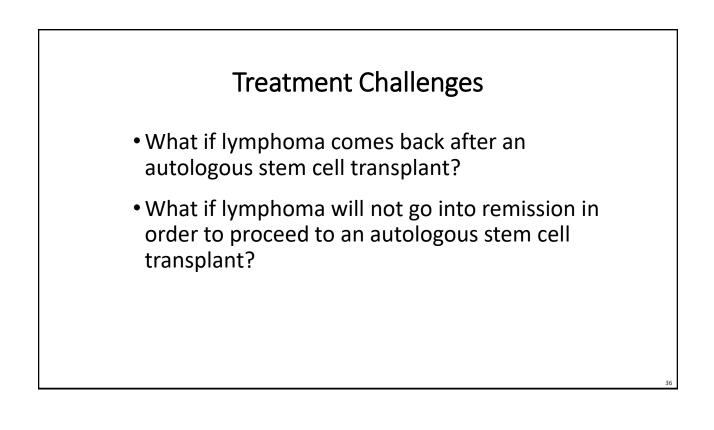
- Pathophysiology remains unclear:
 - Diffusion of cytokines into central nervous system
 - Trafficking of T cells into central nervous system
- CSF is usually positive for CAR T cells
- MRI of brain is usually negative
 - Reversible white matter changes and cerebral edema have been rarely observed
- EEG is either non-focal with generalized slowing or might show non-convulsive seizure pattern

Maude et al. NEJM 2014; Davila et al. SciTrMed 2014; Lee et al. The Lancet 2015; Turtle et al. JCI 2016; Kochenderfer et al. JCO 2015; Turtle et al. JCI 2016; Gust et al. Cancer Disc. 2017

CARTOX-10 [12]	ICE
 Orientation: orientation to year, month, city, hospital, president/prime minister of country of residence: 5 points Naming: ability to name 3 objects (eg, point to clock, pen, button): 3 points Writing: ability to write a standard sentence (eg, "Our national bird is the bald eagle"): 1 point Attention: ability to count backwards from 100 by 10: 1 point 	 Orientation: orientation to year, month, city, hospital: 4 points Naming: ability to name 3 objects (eg, point to clock, pen, button): 3 points Following commands: ability to follow simple commands (eg, "Show me 2 fingers" or "Close your eyes and stick out your tongue"): 1 point Writing: ability to write a standard sentence (eg, "Our national bird is the bald eagle"): 1 point Attention: ability to count backwards from 100 by 10: 1 point
ARTOX-10 (left column) has been updated to the ICE tool (right column). uestions. The scoring system remains the same. coring: 10, no impairment; -9, grade 1 ICANS; -6, grade 2 ICANS; -2, grade 3 ICANS; -2, grade 3 ICANS; -4, grade 3 ICANS;	ICE adds a command-following assessment in place of 1 of the CARTOX-10 orientation

- 1. First Line: Chemotherapy (R-CHOP or R-EPOCH) + Anti-CD20 monoclonal antibody (Rituximab)
- 2. Common 2nd line regimens if disease comes back: R-ICE, R-DHAP, R-GemOx*

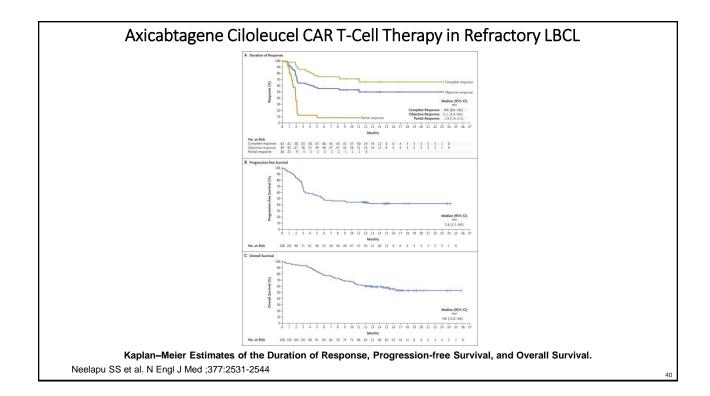

*These regimens may induce remission but response is generally shortlived due to lymphoma stem cells that are resistant to "standard doses" of chemotherapy

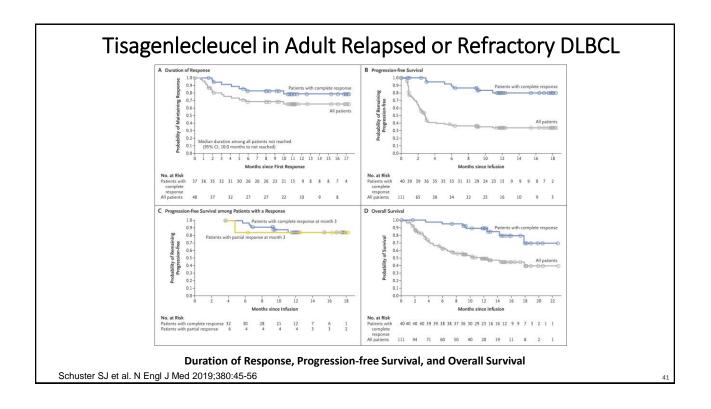

3. Autologous stem cell transplant (ASCT)

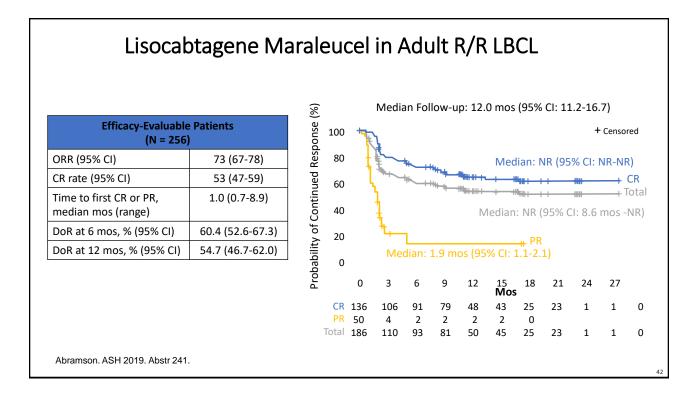


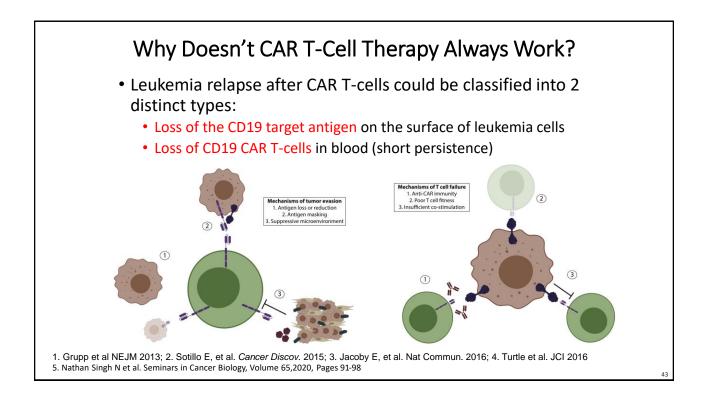
- If a patient's lymphoma goes into remission with 2nd line treatment, ASCT is used to **maintain** the remission.
- During 2nd line treatment, a patient's healthy bloodproducing cells are obtained and frozen.
- After completing 2nd line chemotherapy, patient receives a "high dose chemotherapy" regimen, followed by infusion of their own healthy blood-producing cells.

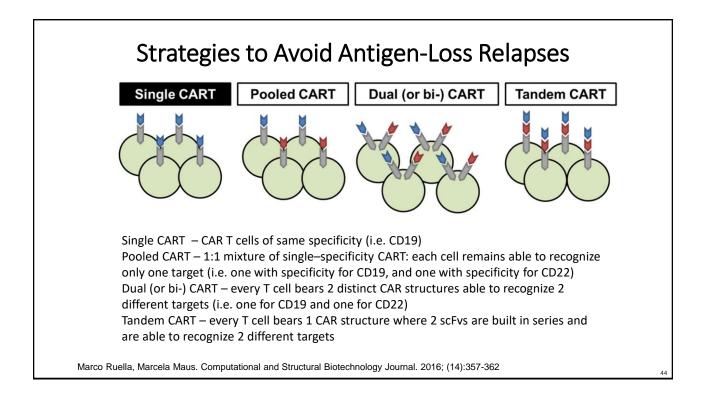
-This helps prevent toxicity of the "high dose chemotherapy."

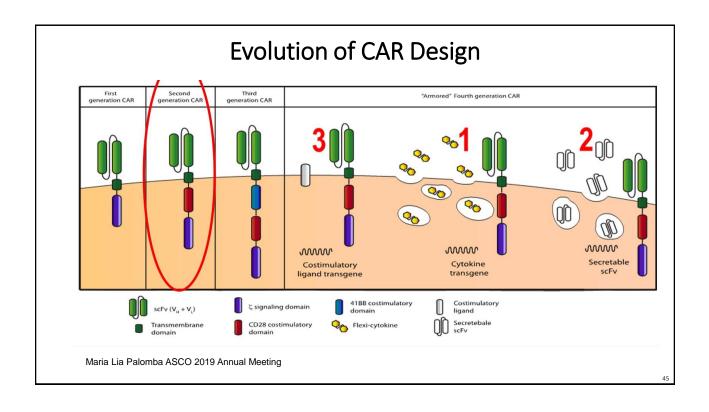


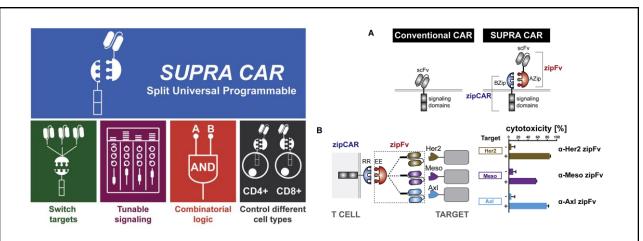

Neelapu SS, et al. N Engl J Med. Volume 377(26):2531-2544. December 28, 2017 Schuster et al. N Engl J Med. Volume 377(26):2545-2554. December 28, 2017 Abramson, Palomba et al. ICML 2017

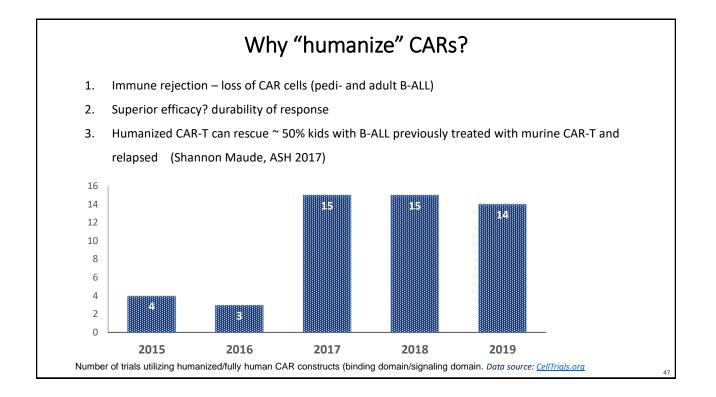

	Axicabtagene Ciloleucel- ZUMA-1	Tisagenlecleucel JULIET	Lisocabtagene Maraleucel TRANSCEND NHL- 001
Construct	antiCD19- CD28 -CD3z	antiCD19- 41BB -CD3z	antiCD19-41BB-CD3z
T-cell Manufacturing	Retroviral vector Bulk T-cells	Lentiviral Vector Bulk T-cells	Lentiviral Vector CD4:CD8 1:1 ratio
Dose	2 x 10 ⁶ /kg (max 2 x 10 ⁸)	0.6 to 6.0 x 10 ⁸	DL1: 0.5 x 10 ⁷ , DL2: 1.0 x 10 ⁸
Bridging Therapy	None allowed in pivotal trial but often used in standard practice	93%	72%
Lymphodepletion	Flu/Cy 500/30 x 3d	Flu/Cy 250/25 x 3d, or BR	Flu/Cy 300/30 x 3d
Treatment Locale	Inpatient Only	Inpatient and Outpatient*	Inpatient and Outpatient*
Approval Status	FDA approved for DLBCL, high- grade B-cell lymphoma, transformed FL, primary mediastinal B-cell lymphoma	FDA approved for pediatric ALL, DLBCL, high-grade B-cell lymphoma, transformed FL	Not yet FDA approved

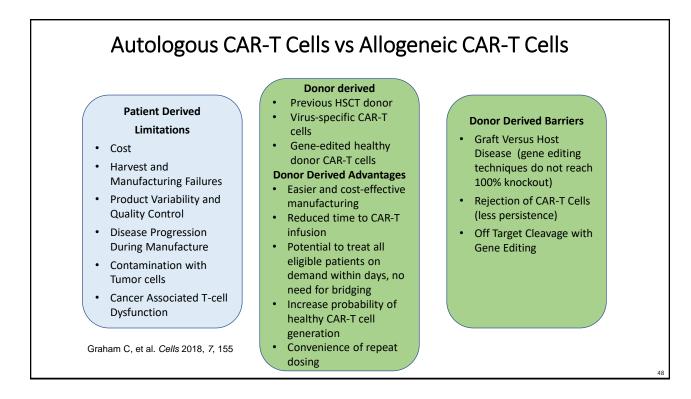

	Zuma-1 (Axicabtagene Ciloleucel)	Juliet (Tisagenlecleucel)	Transcend NHL 001 (Lisocabtagene Maraleucel)
Pts leukapheresed, n	111, 108 infused	141, 111 infused	102, 70 infused
Histologies	Cohort 1: DLBCL Cohort 2: PMBCL, tFL	DLBCL/tFL	DLBCL, PMBCL, tFL, FL3b (CORE) TMZL, MCL, Richter's
Efficacy in R/R DLBCL			
Best OOR	42%	52%	73%
Best CRR	40%	40%	53%
6 month CRR	40%	30%	33% R/R DLBCL DL1, 46% DL2
12-mo PFS		83% in CR/PR pts at 3mo	


1. Schuster SJ, et al. NEJM 2018; 2. Neelapu SS, et al. NEJM 2017; 3. Abramson JS, et al. ASCO 2019



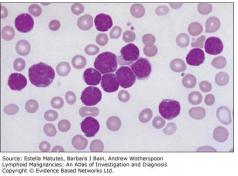






- Programmable system: universal receptor expressed on T cells and a tumor-targeting scFv adaptor molecule
- Targets multiple tumor antigens using different zipFvs
- SUPRA CARs can be finely regulated via multiple mechanisms to limit overactivation
- Variables manipulated: (1) the affinity between leucine zipper pairs, (2) the affinity between tumor antigen and scFv, (3) the concentration of zipFv, and (4) the expression level of zipCAR
- Effect on IFN-γ production by primary CD4+ T cells expressing RR zipCAR

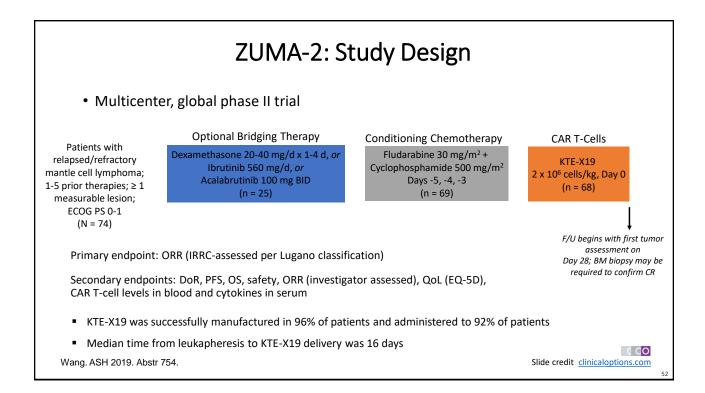
Cho JH, et al. Cell 2018; 173 (6):1316-1317


What's Else is Exciting in LBCL CAR-T?				
Trial	Phase	Treatment	Population	
TRANSFORM (NCT03575351)	ш	Lisocabtagene maraleucel vs SoC	Transplant-eligible R/R aggressive B-cell NHL	
BELINDA (NCT03568461)	ш	Tisagenlecleucel vs SoC	R/R aggressive B-cell NHL	
ZUMA-12 (NCT03761056)	П	Axicabtagene ciloleucel	High-risk large B-cell lymphoma; no prior treatment (1 st line)	
TRANSCEND- PILOT (NCT03483103)	п	Lisocabtagene maraleucel	R/R aggressive B-cell NHL after first-line immunochemotherapy, ineligible for ASCT	
MB-CART2019.1 (NCT03870945)	I	Bispecific tandem CAR T construct against CD19 and CD20	R/R B-NHL without curative treatment option, or in 2 nd line, non-transplant eligible DLBCL patients	
ALEXANDER (NCT03287817)	1	AUTO3, the first CD19/22 dual targeting with pembrolizumab	R/R DLBCL	
ALPHA (NCT03939026)		ALLO-501 and ALLO-647 anti CD19	R/R large B-cell or follicular lymphoma	

CAR T-Cell Therapy in B-Cell Non-Hodgkin Lymphoma (NHL)

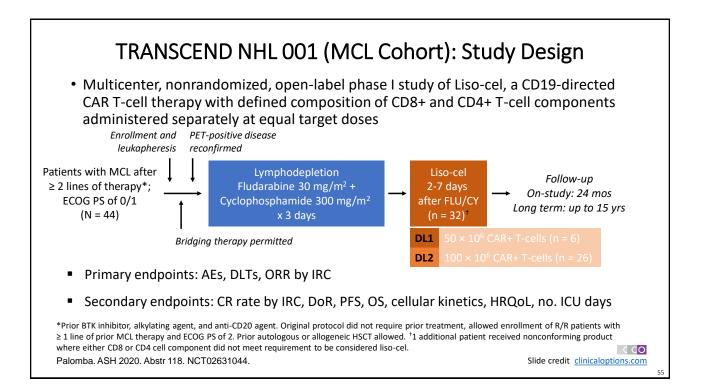
• Diffuse Large B-Cell Lymphoma (DLBCL)

• Mantle Cell Lymphoma (MCL)


- Follicular Lymphoma
- Marginal Zone Lymphoma

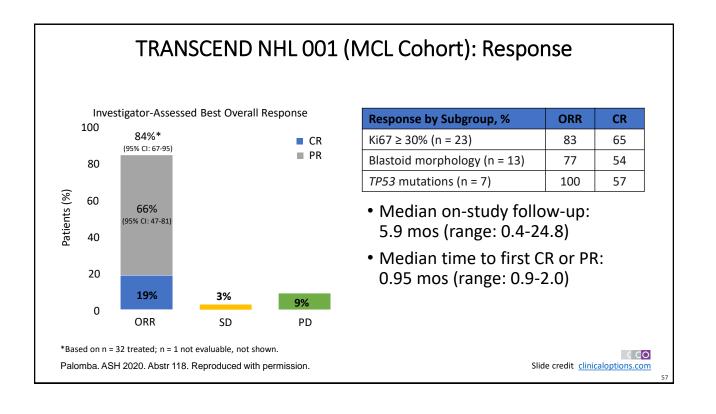
Phase II ZUMA-2 Trial of KTE-X19 CAR T-Cell Therapy in Relapsed/Refractory Mantle Cell Lymphoma (MCL)

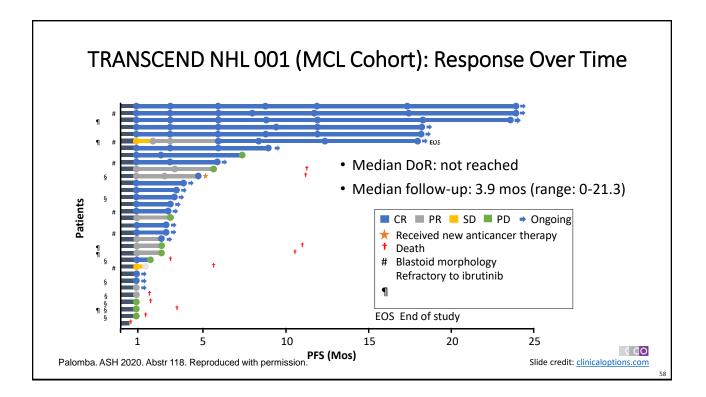
- Mantle cell lymphoma is an uncommon, aggressive B-cell NHL subtype with hallmark chromosomal translocation t(11;14)(q13;q32)
- KTE-X19: autologous CD19-targeted CAR T-cell therapy comprising a CD3ζ T-cell activation domain and a costimulatory CD28 domain
- The phase II ZUMA-2 study sought to evaluate efficacy and safety of KTE-X19 in patients with relapsed/refractory MCL
- First CAR T-cell therapy, brexucabtagene autoleucel, FDA approved in 2020 for treatment of adults with R/R MCL

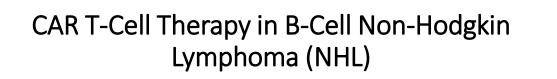

1. Martin. Blood. 2016;127:1559. 2. Jain. Br J Haematol. 2018;183:578. 3. Epperla. Hematol Oncol. 2017;35:528. 4. Sabatino. Blood. 2016;128:1227. 5. Wang. ASH 2019. Abstr 754.

Characteristic	N = 68
Median age, yrs (range)	65 (38-79)
■ ≥ 65 yrs, n (%)	39 (57)
Male, n (%)	57 (84)
Stage IV, n (%)	58 (85)
ECOG PS 0-1, n (%)	68 (100)
Int/high-risk MIPI, n (%)	38 (56)
Ki-67 index ≥ 50%, n/N (%)	34/49 (69)
TP53 mutation, n/N (%)	6/36 (17)
Bone marrow involvement, n (%)	37 (54)
Extranodal disease, n (%)	38 (56)
MCL morphology, n (%)	
Classical	40 (59)
 Pleomorphic 	4 (6)
 Blastoid 	17 (25)

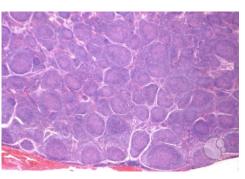
1: - - - :

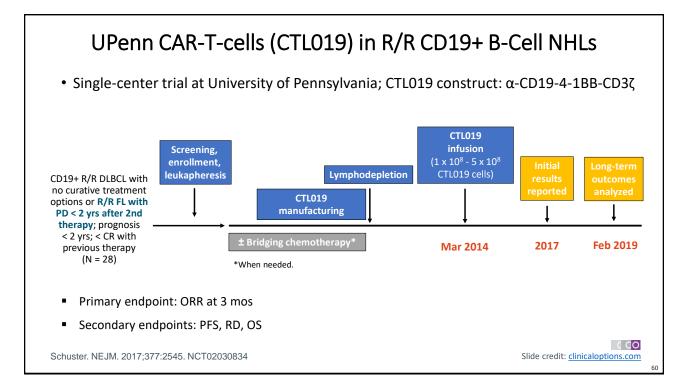

ZUMA-2: Objective Response, Duration of Response, Progression-free Survival, and Overall Survival B Duration of Response A Best Response ORR of 93% (CR: 67%) 100-56 (93) 100 Complete response 90-Partial response 80 Median DoR: not reached Percent of Patients with Response 80-70-60-(95% CI: 8.6-NE) Percent of Patients 60-40 (67) 40-50-57% of all responders _ 40-20and 78% of those with 30-Median, not reached (95% CI, 8.6-NE) 0-20-2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 a CR remained in 16 (27) 10-2 (3) 2 (3) Months remission No. at Risk 56 48 42 32 25 17 15 14 12 12 11 9 2 2 2 0 Objective Response Stable Disease Progressiv Disease Median f/u for initial 28 C Progression-free Survival D Overall Survival patients treated: 27 mos 100 100 Percent of Patients Alive (range: 25.3-32.3) 80 80-Percent of Patients without Progression 60-60-- 43% remained in 40-40remission without 20 20 additional treatment Median, not reached (95% CI, 9.2-NE) Median, not reached (95% CI, 24.0-NE) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 ORR consistent across Months Months No. at Risk 60 54 43 38 31 17 16 15 13 12 12 11 4 2 2 1 0 No. at Risk 60 59 55 52 46 36 27 21 21 21 20 20 19 15 7 2 1 0 subgroups Wang M et al. N Engl J Med 2020;382:1331-1342 54

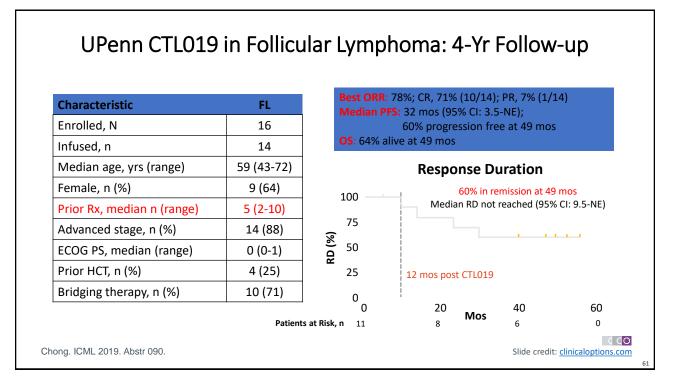



TRANSCEND NHL 001 (MCL Cohort): Baseline Characteristics

Characteristic	Liso-cel (N = 32)
BM involvement at infusion,* n (%)	8 (25)
Median prior therapies, n (range)	3 (1-7)
• ≥ 3 prior therapies, n (%)	22 (69)
Prior HSCT, n (%)	11 (34)
• Allogeneic/autologous	3 (9)/10 (31)
Refractory, n (%)	26 (81)
Prior BTK inhibitor, n (%)	28 (88)
Prior ibrutinib	24 (75)
Refractory to prior ibrutinib [‡]	10 (31)
Prior venetoclax, n (%)	8 (25)
• Refractory to prior venetoclax	5 (16)
Bridging therapy, n (%)	17 (53)
Systemic treatment only	12 (37.5)
Radiotherapy only	1 (3)
Systemic therapy and radiotherapy	4 (12.5)

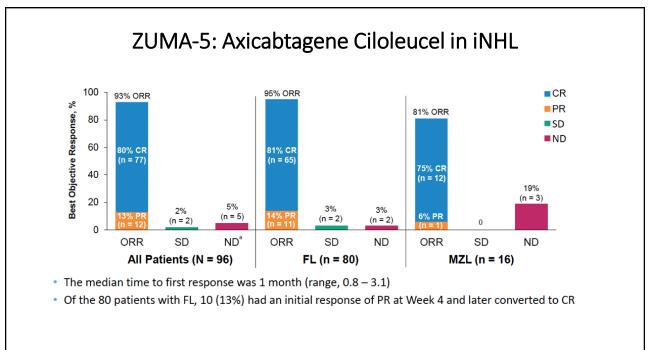

Characteristic	Liso-cel (N = 32)
Median age, yrs (range)	67 (36-80)
■ ≥ 65 yrs of age, n (%)	21 (66)
Male, n (%)	27 (84)
ECOG PS 0/1 at screening, n (%)	16 (50)/16 (50)
Blastoid morphology, n (%)	13 (41)
Ki67 ≥ 30%, n (%)	23 (72)
TP53 mutations, n (%)	7 (22)
SPD \ge 50 cm ² prior to LDC, [§] n (%)	5 (17)
LDH > ULN prior to LDC, n (%)	16 (50)
CRP ≥ 20 mg/L at baseline, ^{\parallel} n (%)	17 (55)
Secondary CNS lymphoma at time of liso-cel administration, n (%)	1 (3)
Best response of to last systemic or transplant treatment wit Best response of PD. [§] I Sl	



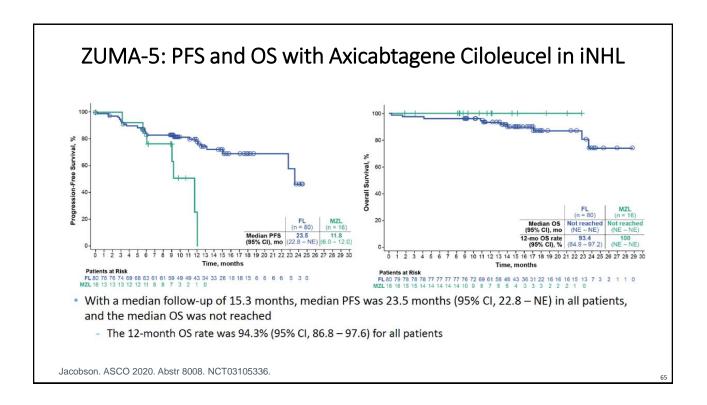


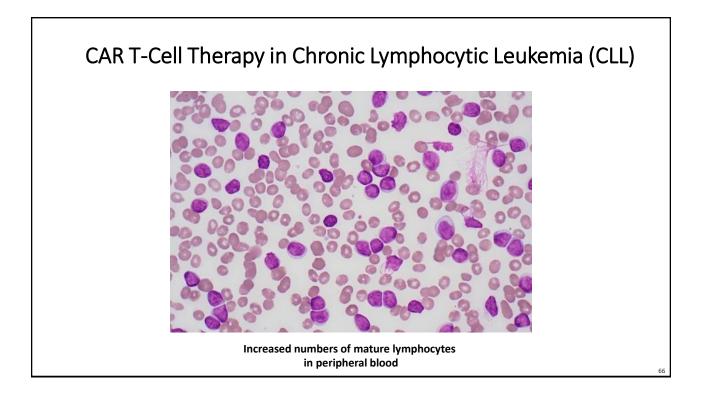
- Diffuse Large B-Cell Lymphoma (DLBCL)
- Mantle Cell Lymphoma (MCL)
- Follicular Lymphoma
- Marginal Zone Lymphoma

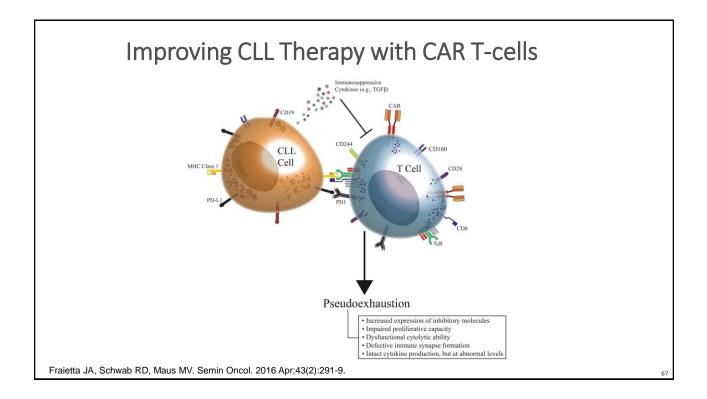
ASH Image Bank – American Society of Hematology 59



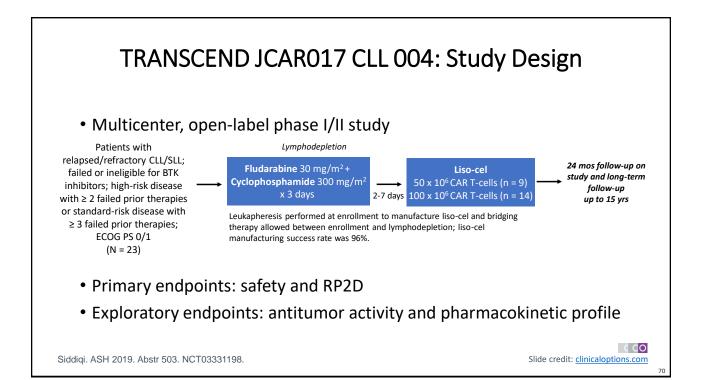
ZUMA-5: Phase II Trial of Axicabtagene Ciloleucel (Axi-Cel) in High-Risk R/R Indolent NHL Lymphodepleting Patients with high risk* **Conditioning Regimen** indolent FL or MZL after Patients \geq 2 prior lines of CIT; Cyclophosphamide Axicabtagene followed up ECOG PS 0/1; + Fludarabine Ciloleucel⁺ IV Leukapheresis to 15 yrs for no CNS involvement or on Days -5 to -3 on Day 0 safety transformed disease (planned N = 160; *High risk: with POD24, relapse post ASCT, or PD within 6 mos of second-line CIT or beyond. n = 96 for efficacy analysis[†]) [†]n = 80 with FL and ≥ 9 mos of f/u; n = 16 with MZL and ≥ 1 mo of f/u. Axi-cel: CD19-directed CAR T-cell therapy. 100 (PFS 80 Manageable toxicity profile with axi-cel; PFS (%) 60 early onset of adverse events, generally 40 EI. MZL reversible (n = 80) (n = 16) 20 Median PFS, 23.5 11.8 Mos (95% Cl) (22.8-NE) (6.0-12.0) 0 Mos Slide credit: clinicaloptions.com Jacobson. ASCO 2020. Abstr 8008. NCT03105336.


Characteristic	FL n = 80	MZL n = 16	All Patients N = 96
Median age (range), years	62 (34 – 79)	67 (52 – 77)	63 (34 – 79)
≥ 65 years, n (%)	29 (36)	11 (69)	40 (42)
Male, n (%)	43 (54)	4 (25)	47 (49)
ECOG PS 1, n (%)	33 (41)	6 (38)	39 (41)
Stage IV disease, n (%)	37 (46)	13 (81)	50 (52)
≥ 3 FLIPI, n (%)	38 (48)	11 (69)	49 (51)
High tumor bulk (GELF criteria), n (%)ª	40 (50)	7 (44)	47 (49)
Median no. of prior therapies (range)	3 (2 – 9)	3 (2 – 8)	3 (2 – 9)
≥ 3, n (%)	56 (70)	11 (69)	67 (70)
Prior PI3Ki therapy, n (%)	26 (33)	6 (38)	32 (33)
Refractory disease, n (%) ^b	59 (74)	11 (69)	70 (73)
POD24 from first anti-CD20 mAb-containing therapy, n (%) ^c	45 (56)	7 (44)	52 (54)
Prior autologous SCT, n (%)	19 (24)	3 (19)	22 (23)

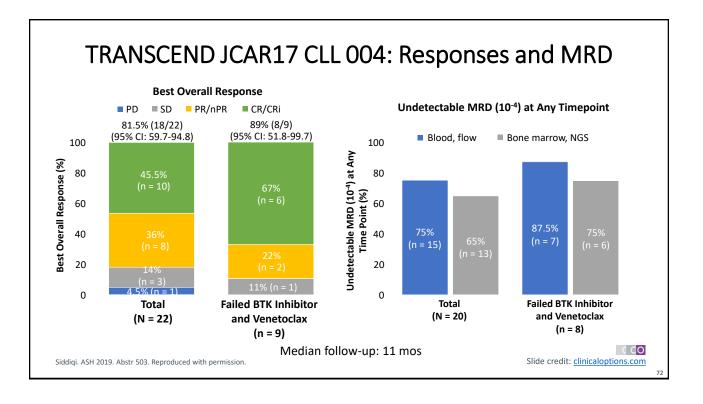

ZUMA-5: Axicabtagene Ciloleucel in iNHL

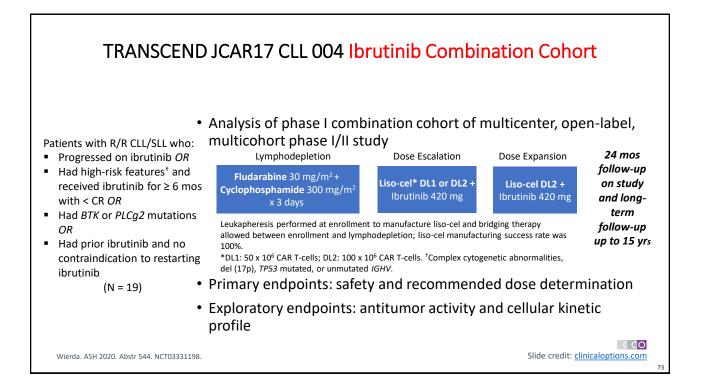

Jacobson. ASCO 2020. Abstr 8008. NCT03105336.

Jacobson. ASCO 2020. Abstr 8008. NCT03105336.


Feasibility and efficacy of JCAR014 CD19-targeted CAR T cells with concurrent ibrutinib* for CLL after ibrutinib failure

Patient Characteristics (n=36)	lbr Cohort (n=17)	No-Ibr Cohort (n=19)	P value
Number of prior therapies	5 (4,7)	5 (4,6)	0.55
Prior progression on Ibrutinib	16 (94%)	18 (95%)	1.00
CRS None Any grade CRS grade 0-2 CRS grade 3-5	4 (24%) 13 (76%) 17 (100%) 0 (0%)	2 (11%) 17 (89%) 14 (74%) 5 (26%)	0.39 0.39 0.05 0.05
Neurotoxicity None Any Grade	12 (71%) 5 (29%)	11 (58%) 8 (42%)	0.50 0.50
OR at 4 wks 2008 iwCLL	14 (88%)	10 (56%)	0.06
Nodal response at 4 wks CR/PR	10 (83%)	10 (59%)	0.23


* Ibrutinib was scheduled to begin ≥2 weeks before leukapheresis and continue for ≥3 months after CAR T-cell infusion. Gauthier et al., Blood, 2018


CAR-T and Ibrutinib in CLL: Sequential or simultaneous?

- CD19 CAR T-cell therapy with concurrent ibrutinib is well tolerated.
- The 4-week ORR using 2018 International Workshop on CLL (iwCLL) criteria is higher with Ibrutinib combination, and more patients achieve a minimal residual disease (MRD)-negative marrow response by *IGH* sequencing.
- The 1-year overall survival and progression-free survival (PFS) probabilities are higher higher with Ibrutinib combination.
- Compared with CLL patients treated with CAR T cells without ibrutinib, CAR T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in vivo CAR T-cell expansion.

Characteristic	Total Patients (N = 23)
Any high-risk features, n (%) • del(17p) • <i>TP53</i> mutation • Complex karyotype*	19 (83) 8 (35) <mark>14 (61)</mark> 11 (48)
Median number of prior therapies (range)	5 (2-11)
Prior ibrutinib, n (%)	23 (100)
lbrutinib refractory/relapsed, n (%)	21 (91)
BTK inhibitor progression and failed venetoclax, [†] n (%)	9 (39)
*≥ 3 chromosomal abnormalities. [†] Discontinuation due to PD or less of therapy.	than PR after ≥ 3 mo

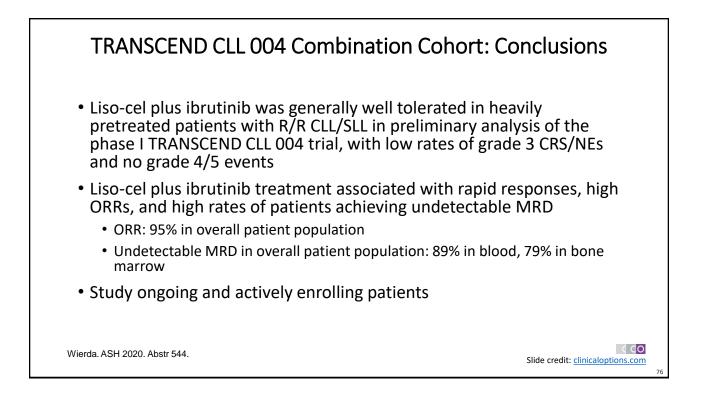
TRANSCEND CLL 004 Combination Cohort:
Baseline Characteristics

Characteristic	Total Patients (n = 19)	Liso-cel DL1 + Ibrutinib (n = 4)	Liso-cel DL2 + Ibrutinib (n = 15)	
Any high-risk features, n (%)	18 (95)	4 (100)	14 (93)	
■ del(17p)	8 (42)	2 (50)	6 (40)	
TP53 mutation	6 (32)	1 (25)	5 (33)	
Complex karyotype*	8 (42)	3 (75)	5 (33)	
Median no. prior therapies (range)	4 (1-10)	4.5 (1-5)	3 (2-10)	
 Prior ibrutinib, n (%) 	19 (100)	4 (100)	15 (100)	
 Ibrutinib relapsed/refractory, n (%) 	19 (100)	4 (100)	15 (100)	
Prior BTKi and venetoclax, n (%)	11 (58)	2 (50)	9 (60)	

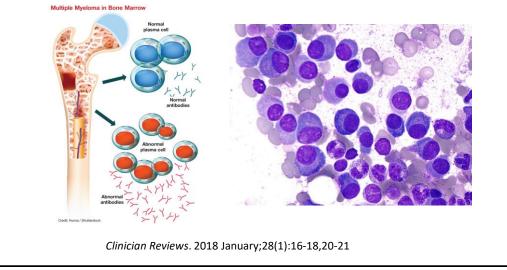
 \geq 3 chromosomal abnormalities.

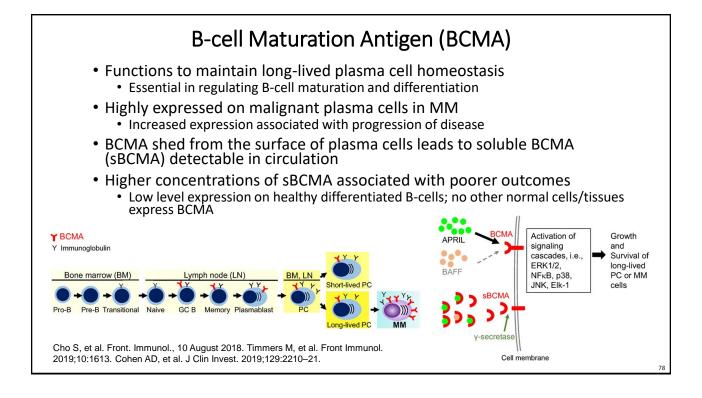
Wierda. ASH 2020. Abstr 544.

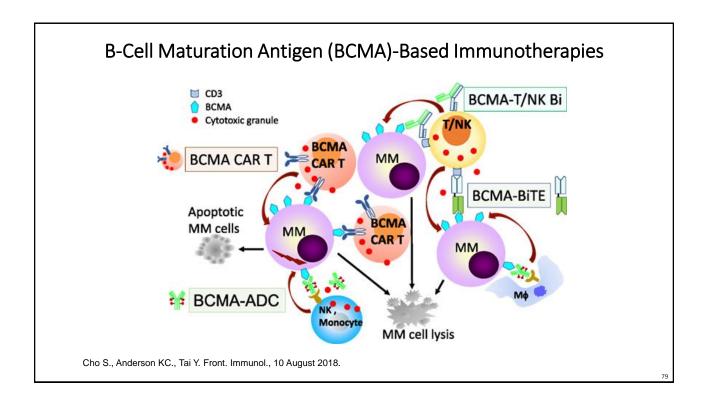
Slide credit: <u>clinicaloptions.com</u>


CO)

Slide credit: clinicaloptions.com


Efficacy Outcome	Total	Liso-cel DL1 +	Liso-cel DL2 +
	Patients	Ibrutinib	Ibrutinib
	(n = 19)	(n = 4)	(n = 15)
DRR, n (%)	18 (95)	3 (75)	15 (100)
■ CR/CRi	12 (63)	2 (50)	10 (67)
■ PR	6 (32)	1 (25)	5 (33)
Jndetectable MRD ≤ 10 ⁻⁴ , n (%) ■ PB by flow cytometry ■ BM by NGS	17 (89) 15 (79)	3 (75) 3 (75)	14 (93) 12 (80)


• Among 18 patients with ≥ 6 mos of follow-up, 16 maintained or improved response from Day 30


Wierda. ASH 2020. Abstr 544.

CAR T- Cell Therapy in Multiple Myeloma (MM)

Phase I NCI BCMA CAR

- Single-center, open-label phase I trial in patients with R/R MM, N=16
- CD28 costimulatory domain, gamma-retroviral vector, dose levels: 0.3, 1, 3, and 9 ×106 CAR T-cells/kg
- Lymphodepletion: Flu 30 mg/m2 and Cy 300 mg/m2 daily on days -5 to -3

Baseline Characteristics				Adverse Events and Management		
Median lines of prior therapy	9.5	PR or better	13 (81%)	Grade 3-4 CRS	6 (37.5%)	
High risk cytogenetics	40%	Median EFS	31 weeks	Tocilizumab	5 (31%)	
Del(17p)	33%	DoR >1 year	5 (31%)	Tocilizumab + steroids	4 (25%)	
Refractory to last treatment	63%	DoR > 6 months	9 (56%)			

80

	BB2121 (BLUEBIRD) Idecabtagene vicleucel	LCAR-B38M (LEGEND)	JCARH125 (JUNO)
Population	33	57	44
# Prior Tx	7	3	7
CART Dose	50-800 x 106	0.07-2.1 x 106/kg	50-450 x 106
ORR	85%	88%	82%
CR	45%	74%	27%
CRS All Grades (Grade 3/4)	76% (6%)	89% (7%)	80% (9%)
Med Onset of CRS	2d	9d	3d
Neurotox All Grades (Grade 3/4)	42% (3%)	2% (0%)	25% (7%)
Med PFS	11.8 months	15 months	-

Phase I Data: BCMA-Directed CAR T Cells in Multiple Myeloma

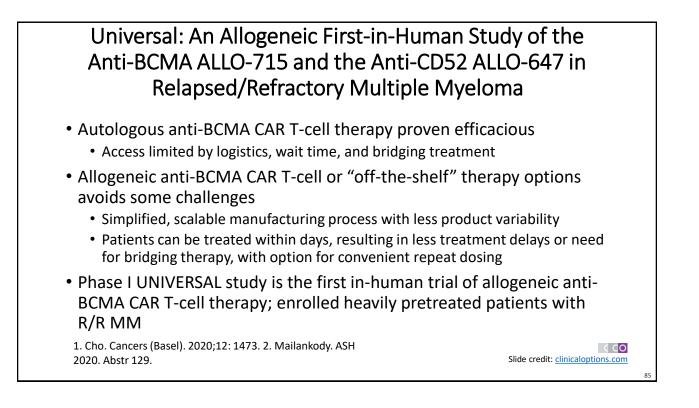
Raje et al, NEJM 2019; Zhao et al, ASH 2018, Mailankody et al, ASH 2018.

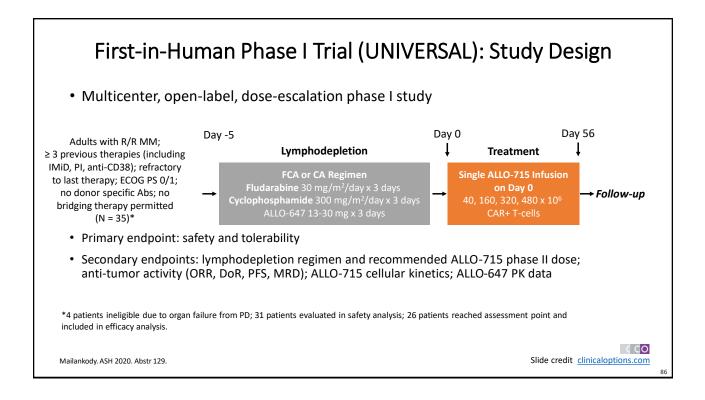
Pivotal Phase II KarMMa trial of Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in R/R MM

a (= a)				
2 (50)	48 (69)	44 (82)	94 (73)	
1 (25)	25) 20 (29) 19 (35)		40 (31)	
+	9.9	11.3	10.6	
+	5.8	11.3	8.6	
2 (50) / 0	53 (76) / 4 (6)	52 (96) / 3 (6)	107 (84) / 7 (5)	
7 / 5	2 / 4	1/7	1/5	
0/0	12 (17) / 1 (1)	11 (20) / 3 (6)	23 (18) / 4 (3)	
NA	3/3	2 / 5	2/3	
	+ + 2 (50) / 0 7 / 5 0 / 0	+ 9.9 + 5.8 2 (50) / 0 53 (76) / 4 (6) 7 / 5 2 / 4 0 / 0 12 (17) / 1 (1) NA 3 / 3	t 9.9 11.3 t 5.8 11.3 2 (50) / 0 53 (76) / 4 (6) 52 (96) / 3 (6) 7 / 5 2 / 4 1 / 7 0 / 0 12 (17) / 1 (1) 11 (20) / 3 (6) NA 3 / 3 2 / 5	

Phase 1/2 CARTITUDE-1 (UPDATED)

- Open-label phase 1/2 trial of JNJ-4528 in R/R MM, N=29
- Pts received ≥3 prior regimens or were double refractory to a proteasome inhibitor (PI) and immunomodulatory drug (IMiD), and received an anti-CD38 antibody.
- Lymphodepletion: Flu 30 mg/m2 and Cy 300 mg/m2 daily x 3 days
- As of 17 Jan 2020, median follow-up is 9 mo (3–17)


Baseline Characteristics		Results		Adverse Events and Management	
Median lines of prior therapy	5 (3-18)	ORR	100%	CRS	27 (93%)
Triple refractory to a PI, IMiD, and anti-CD38 antibody	86%	sCR	22 (76%)	Grade 1-2 Grade 3 CRS/Grade 5 CRS	n=25 n=1, n=1
Penta-refractory to 2 IMiDs, 2 PIs, and Daratumumab	31%	VGPR	6 (21%)	Grade 1 NT/Grade 3 NT	n=3, n=1
		PR	1 (3%)		


Berdeja JG et al. JCO 2020 38:15_suppl, 8505-8505

83

Phase 1/2 CARTITUDE-1 (UPDATED)

- Median time to \geq CR was 2 months (range 1–9).
- 26/29 pts are progression-free, with 6-mo progression-free survival rate of 93% and longest response ongoing at 15 mo.
- All 16 pts (14 sCR, 2 VGPR) evaluable at 6 months were minimal residual disease negative at 10⁻⁵ or 10⁻⁶.
- At 6-mo individual follow-up, 22/28 pts had JNJ-4528 CAR+ T cells below the level of quantification (2 cells/ μ L) in peripheral blood, suggesting CAR-T persistence in peripheral blood did not seem to correlate with deepening of response.
- **Conclusions:** JNJ-4528 treatment led to responses in all pts. These responses were early, deep, and durable at a low dose of CAR-T cells with 26/29 (90%) pts progression free at median 9-mo follow-up. CRS was manageable in most pts, supporting outpatient dosing.

First-in-Human Phase I Trial (UNIVERSAL): **Baseline Characteristics Safety Population** Characteristic, % · Median time from enrollment to start of (N = 31) treatment: 5 days 65 (46-76) Median age, yrs (range) Male 61 Lymphodepletion Regimen, n ECOG PS 0/1 48/52 CAR T-Cell FCA + FCA + CA + Dose Low-Dose **High-Dose** Low-Dose ISS stage ≥ 2 74 ALLO-647 ALLO-647 ALLO-647 High-risk cytogenetics* 48 40 x 10⁶ cells 3 ------Extramedullary disease 23 160 x 10⁶ cells 4 ---3 High tumor burden (> 50% BMPCs) 39 320 x 10⁶ cells 6 4 3 Median time since diagnosis, yrs (range) 5.4 (0.9-20.1) 480 x 10⁶ cells 3 -----Median prior tx regimens, n (range) 5 (3-11) Prior ASCT 94 • Median follow-up: 3.2 mos Penta exposed 94 C C O

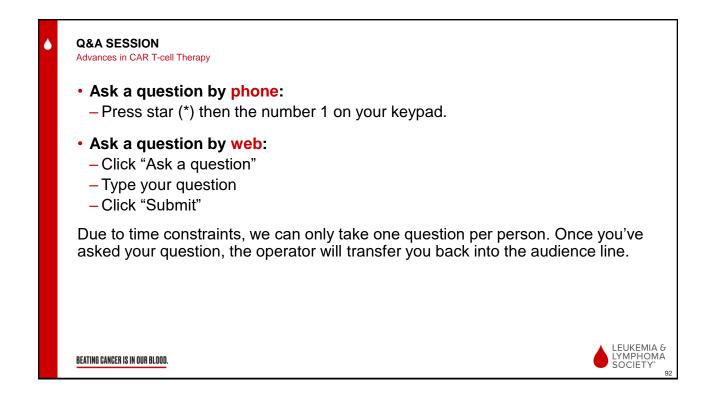
Mailankody. ASH 2020. Abstr 129.

Slide credit: clinicaloptions.com

First-in-Human Phase I Trial (UNIVERSAL): Response Rate

- 60% of patients in FCA plus 320 x 10⁶ dose of ALLO-715 cohort responded to treatment; 40% achieved ≥ VGPR^[1]
- 5/6 patients assessed with ≥ VGPR had negative MRD status^[1]

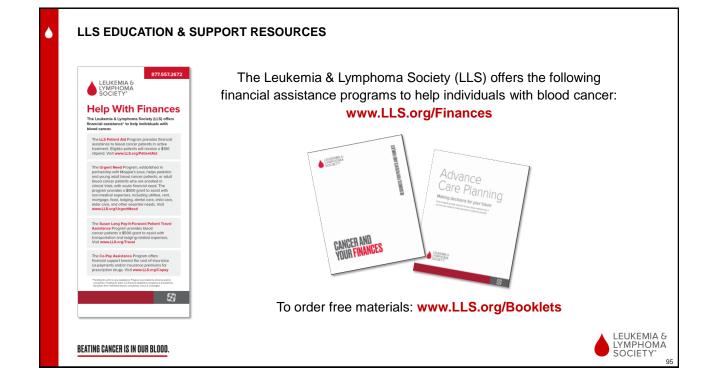
Cell Dose and LD Regimen	FCA Cohort						CA C	ohort
ALLO-715	40	160	320	320	320	480	160	320
ALLO-647	Low (n = 3)	Low (n = 4)	Low (n = 6)	High (n = 4)	All (n = 10)	Low (n = 3)	Low (n = 3)	Low (n = 3)
ORR, n (%)		2 (50)	3 (50)	3 (75)	6 (60)	1 (33)		2 (67)
≥ VGPR, n (%)		1 (25)	3 (50)	1 (25)	4 (40)			1 (33)

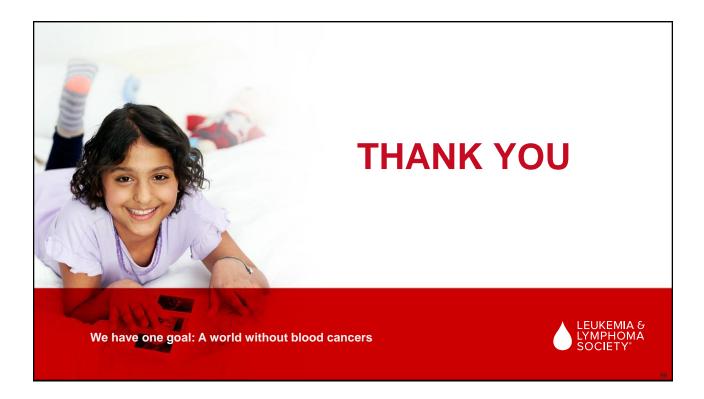

1. Mailankody. ASH 2020. Abstr 129. 2. Kumar. Lancet Oncol. 2016;17:e328.

Future Directions of Most Advanced CAR T Products in Multiple Myeloma	
 Race to FDA Approval in the USA Global Pivotal Trial (KarMMa) of Idecabtagene vicleucel just completed enrollment Legend/Janssen enrolling on pivotal trial of LCAR-B38M or JNJ- 68284528 	
 Use Beyond the Refractory Setting Trials in earlier phase of disease KarMMa 3 – randomized Phase 3 of bb2121 vs SOC in pts with 2-4 priors KarMMa 2 – cohort of pts with early relapse 9 (with or without ASCT), bb2121 as 2nd line Trials in conjunction with ASCT/Consolidation in MRD KarMMa2 – Cohort 2C upfront in pts with inadequate response to ASCT Dual antigen targeting to mitigate Ag escape UPenn/Novartis (BCMA CART with or without CART19) [NCT03549442] – in pts responding to 1st or 2nd line therapy for high-risk MM 	

Investigational Allogeneic CAR T-cells in Hematologic Malignancies						
Trial	Phase	Planned N	Primary Endpoints	Treatment		
NCT02746952 (CALM)	Ι	30	DLT, Safety	UCART19, anti-CD19 allogeneic CAR T-cell in adult R/R ALL		
NCT02808442 (PALL)	I	18	Safety	UCART19, anti-CD19 allogeneic CAF T-cell in pediatric R/R ALL		
NCT03939026 (ALPHA)	1/11	24	DLT, ORR	ALLO-501, anti-CD19 allogeneic CAF T-cell in R/R LBCL or FL		
NCT03190278 (AMELI-01)	I	59	DLT, Safety	UCART123, anti-CD123 allogeneic CAR T-cell in R/R AML		
NCT04093596 (UNIVERSAL)	I	90	DLT	ALLO-715, anti-BCMA allogeneic CAR T-cell in R/R MM		
NCT04142619 (MELANI-01)	I	18	Safety	UCARTCS1A, anti-CS1 allogeneic CAR T-cell in R/R MM		
NCT03971799	1/11	34	DLT, ORR	CD33CART, anti-CD33 allogeneic CAR T-cell in R/R AML		
ww.clinicaltrials.gov. Ac	ccessed Decem	ber 12, 2020	DLT: Dose limiting	toxicity		

Conclusions


- CD19 CAR T-cells are the most successful and best known CAR therapy providing durable responses in pediatric/young adult B-cell ALL, adult LBCL and MCL
- Unique toxicities of CRS and neurotoxicity may occur
 - Strategies for uniform grading to be used across clinical trials and the postapproval clinical setting recently published
- Clinical trials evaluating the use of CAR T-cells alone or in combination with other agents, in other malignancies, and versus standard of care therapies are ongoing
- Allogeneic CAR T-cell therapy may overcome barriers to current FDA approved products



47

