

Definitions and Risk Assessment

Definitions

- <u>AML is a hematological cancer</u>: "Clonal" proliferation of myeloid precursor cells (immature white blood cells), unable to mature
- These malignant "blasts" accumulate in marrow, blood, and sometimes other tissues
 - 20% blasts = acute leukemia
- These abnormal cells inhibit production of red blood cells, platelets, and mature neutrophils / granulocytes

Prognostication in AML

- · Who is the patient?
 - Age
 - Medical "co-morbidities" (i.e., other problems)
- Did it evolve out of preceding marrow disease (e.g. myelodysplastic syndromes (MDS))?
 - Not always easy to tell...
- Is it a consequence of therapy for another cancer? ("therapy-related AML")
- · What are the biological characteristics?
 - Cytogenetic (chromosome) analysis
 - DNA mutational analysis: FLT3, NPM1, CEBPA, etc

Cytogenetics (chromosomes, karyotype)

"Good-risk"

- Translocation t(15;17) Acute promyelocytic leukemia (APML, APL)
 ~10%... A different disease
- t(8;21) and inv(16),
 - ~15%, "Core binding factor" alterations

"Poor-Risk"

- -Chromosome 7 deletion
- -Chromosome 5 deletion
- -t(6;9)
- -Complex (i.e., 3 or more abnormalities)
- -Chromosome 11 translocations at 11q23
- -Chromosome 17p abnormalities

"Intermediate"

-Normal -One or two (non-bad) abnormalities

7

2. The karyotype at the diagnosis of AML [46, XX, t(8;21)(q22;q22)]

Sakai et al Internal Medicine 43: 582-586, 2004

•	n LeukemiaNet	· · · ·	
	pean LeukemiaNet Standardized Reporting System for f Cytogenetic and Molecular Genetic Data in AML With Clinical Data ¹²		
Genetic Group	Subsets		
Favorable	t(8;21)(q22;q22); RUNX1-RUNX171 inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 Mutated NPM1 without FL73-ITD (normal karyotype) Mutated CEBPA (normal karyotype)		
Intermediate-I	Mutated NPM1 and FLT3-ITD (normal karyotype) Wild-type NPM1 and FLT3-ITD (normal karyotype) Wild-type NPM1 without FLT3-ITD (normal karyotype)		
Intermediate-II	t(9;11)(p22;q23); <i>MLLT3-MLL</i> Cytogenetic abnormalities not classified as favorable or adverse		
Adverse	inv(3)(q21q26.2) or t(3;3)(q21;q26.2); <i>RPN1-EV11</i> t(6;9)(p23;q34); <i>DEK-NUP214</i> t(v;11)(v;q3); <i>MLL</i> rearranged -5 or del(5q) -7 abn((17p) Complex karyotype*		
*Complex karyo ities in the absen	IL, acute myeloid leukernia; ITD, internal tandern duplication. type is defined as three or more chromosome abnormal- ce of one of the WHO designated recurring translocations (21), inv(16) or t(16;16), t(15;17), t(9;11), t(v;11)(v;q23), 3;3).		10
L		I Mrozek K et al, JCO 2012	

Why Do Older Patients with AML Have A Poorer Prognosis?

- · Frailer and more commonly have other health problems
- · Less favorable and more unfavorable cytogenetics
- Higher incidence of preceding MDS
- Elevated therapy-related morbidity and mortality
- Higher incidence of treatment-resistant disease
- Lower rates and duration of complete remission, and shorter median overall survival
- Less likely to be eligible for allogeneic hematopoietic cell transplantation

- leek
CHAN .

AML gets	more complex!	
TH NEW ENGLAND JOURNAL & MEDICINE ORIGINAL ARTICLE Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome	The NEW ENGLAND JOURNAL of MEDICINE ORIGINAL ARTICLE DNMT3A Mutations in Acute Myeloid Leukemia	
JOURNAL OF CLINICAL ONCOLOGY O R I G I N A L R E P O R T IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study	Ezriz Matadolis Are helated to Low blast recentage in	
JOURNAL OF CLINICAL ONCOLOGY ORIGINAL REPORT TET2 Mutations Improve the New European LeukemiaNet Risk Classification of Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study	ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category "Kaua H. Matzulet," Hado Becker, Kall Mahary, ¹⁵ McHael D. Bahmacher, ¹⁵ Jacas Kothecherd, ¹⁵ Sozia Kothecherd, ¹⁵ McHael, ¹⁵ Kothecherd, ¹⁶ McHael, ¹⁶ Kothecherd, ¹⁶ McHael, ¹⁶ Category, ¹⁶ McHael,	đ
		14

Emerging Approaches

		≥	80 mg Gilteritin	ib	
		Mutation Type		TKIS	Status
Clinical Response	FLT3-ITD only	FLT3-D835 only	ITD and D835	Prior TKI	TKI Naïve
	N=142	N=11	N=9	N=40	N=127
CR	16 (11)	0	0	2 (5)	14 (11)
CRp	11 (8)	0	0	3 (8)	8 (7)
CRi	38 (27)	1 (9)	4 (44)	9 (23)	35 (28)
PR	15 (11)	2 (18)	0	5 (13)	13 (10)
CRc (CR+CRp+CRi)	65 (46)	1 (9)	4 (44)	14 (35)	57 (45)
ORR (CRc+PR)	80 (56)	3 (27)	4 (44)	19 (48)	70 (55)

33

Response to Enasidenib (AG-221) in AML/MDS
--

	RR-AML (n = 159)	Untreated AML (n = 24)	MDS (n = 14)	All (N = 209)
Overall Response (CR, CRp, CRi, mCR, PR)	59 (37%) [95%Cl: 30%, 45%]	10 (42%) [22%, 63%]	7 (50%) [23%, 77%]	79 (38%) [31%, 45%]
CR	29 (18%) [95%Cl: 13%, 25%]	4 (17%) [5%, 37%]	3 (21%) [5%, 51%]	37 (18%) [13%, 24%]
CRp	1 (1%)	1 (4%)	1 (7%)	3 (1%)
CRi	3 (2%)	0	0	3 (1%)
mCR	9 (6%)	1 (4%)	3 (21%)	14 (7%)
PR	17 (11%)	4 (17%)	0	22 (11%)
SD	72 (45%)	9 (38%)	6 (43%)	96 (46%)
PD	10 (6%)	1 (4%)	0	11 (5%)
Not evaluable	18 (11%)	4 (17%)	1 (7%)	23 (11%)

Overall response by IDH mutation type: R140Q 36% / R172K 42%

CR, complete response; CRp, CR with incomplete platelet recovery; CRi, CR with incomplete hematologic recovery; mCR, marrow CR; PR, partial response; SD, stable disease; PD, progressive disease

33

Patient achieved CR by e Cycle 1	nd of			
		Dose eso	alation	
Screening 44% blasts		R/R AML n=63	Overall N=78	
	CR, n (%)	10 (16)	14 (18)	
	CRi/CRp, n (%)	8 (13)	8 (10)	
Cycle 1 Day 15	PR, n (%)	1 (2)	2 (3)	
3% blasts	mCR/MLFS, n (%)	2 (3)	6 (8)	
	SD, n (%)	27 (43)	30 (38)	DiN
	PD, n (%)	8 (13)	8 (10)	et a
Cycle 1 Day 28	NE, n (%)	7 (11)	10 (13)	2010
2% blasts	ORR, n (%) [95% CI]	21 (33) [22, 46]	30 (38) [28, 50]	

DNA Hypomethylating Therapies

- Less intensive treatment, increasingly used for frailer or older patients
- · Typically administered in outpatient clinic
- Can lead to therapeutic responses, including transfusion independence, decrease in leukemic burden, and less commonly, remissions
- However, responses often transient, with leukemic progression and brief post-HMA survival
- **Decitabine** and **azacitidine** FDA approved for MDS (and AML with 20-30% blasts)
- Development: guadecitabine (SGI-110), CC-486, ASTX727

Issa JP, et al. Nature Reviews Drug Discovery 2005.

<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item>

Venetoclax + HMA Efficacy in AML

Overall Response, n (%)	Arm A (VI	EN + DEC)	Arm B (V	EN + AZA)	Total
	VEN 400 mg (n=6)	VEN 800 mg (n=12)	VEN 400 mg (n=4)	VEN 800 mg (n=12)	N=34
CR+CRi	3 (50)	9 (75)	4 (100)	7 (58)	23 (68)
ORR (CR+CRi+PR)	3 (50)	10 (83)	4 (100)	7 (58)	24 (71)
CR+CRi+PR+MLFS	3 (50)	11 (92)	4 (100)	10 (83)	28 (82)

- 27/45 (60%) patients achieved CR/CRi, 1/45 (2%) had partial remission (PR), and 4/45 (9%)
 patients achieved morphologic leukemia free state (MLFS) when treated at all dose levels
- 23/34 (68%) patients achieved CR/CRi when treated at 400 and 800mg dose levels
- Median time to CR/CRi was 1 month (range, 0.8–3.8)
- The median duration of response was 8.4 months (95% CI = 6.8—not reached)
- 7/45 (16%) patients experienced morphologic relapse after achieving a CR or CRi
- Median time on study was 3.2 months (range, 0.2–14.6)
 Dinardo C, ASH 2015, Abstract 327
 Pollyea D, ASCO 2016, Abstract 7009. ³⁸

Vadastuximab Best Clinical Response:	
Efficacy Evaluable Patients	

	Efficacy Evaluable	All N=49	Secondary AMLª N=22	FLT3/ITD+ N=5	Age ≥75 years N=26
	Remission Rate (CR + CRi)	73%	77%	100%	65%
But 7/2017,	CR	47%	50%	80%	38%
development on hold due to	CRi (p) ^a	20%	18%	20%	19%
excess deaths	CRi (n) ^b	6%	9%	0	8%
in randomized	mLFS℃	2%	5%	0	4%
study; FDA and sponsor evaluating	ORR (CR + CRi + mLFS)	76%	82%	100%	69%

^a CRi (p)= CR with ANC ≥1000/uL, incomplete platelet recovery

^b CRi (n)= CR with platelets ≥100,000/uL, incomplete neutrophil recovery

^c mLFS = morphologic leukemia-free state

^d Defined as therapy-related AML, AML evolved from prior MDS, or de novo AML with MDS-related cytogenetics

Fathi AT et al. ASH 2015

Transplant Trends

- Older fit patients are increasingly considered eligible (up to ~75 years)
- Increasing use of half-matched "haplo" transplant (usually parent/child)
 Randomize transplant of haplo vs cord blood
- Increasing elective use of bone marrow rather than blood stem cells as donor source
 - Requires an operation, but may reduce graft-versus-host (GVH)
- Increasing use of post-transplant preventive or pre-emptive therapy

 e.g., sorafenib after FLT3 AML allo-SCT
- Monitoring and treatment of graft-versus-host and infection is improving

Conclusions

- FDA approval of 4 new AML drugs in 2017!
 - Hopefully the beginning of a wave
- Biological understanding of AML is improving
- More than 300 AML clinical trials ongoing, testing >40 different novel compounds

- Clinical trials are the only way to move the field forward

• Transplant is more broadly applied, outcomes improving

