

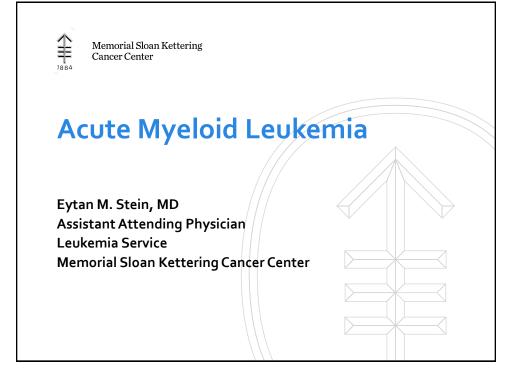
Strategies for Treating AML

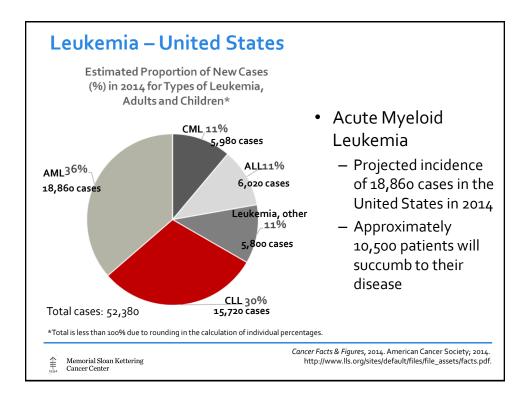
Eytan M. Stein, MD

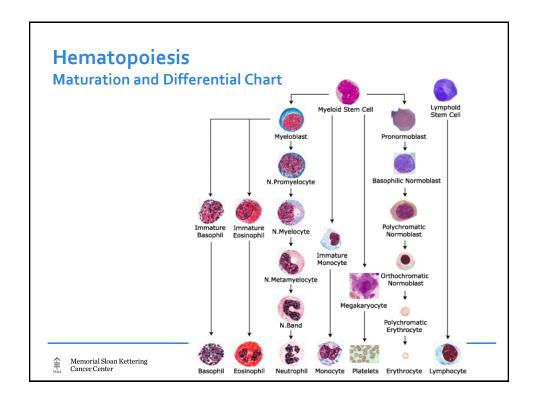
Hematologist and Medical Oncologist Leukemia Service Memorial Sloan Kettering Cancer Center New York, NY

January 19, 2016

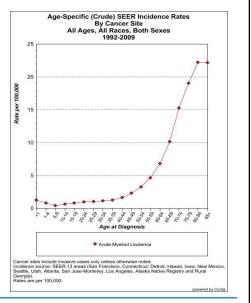
Strategies for Treating AML

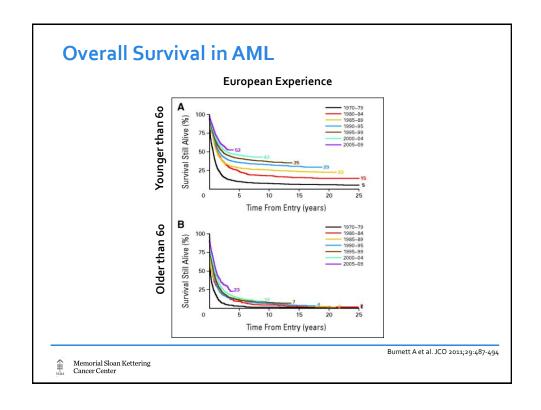


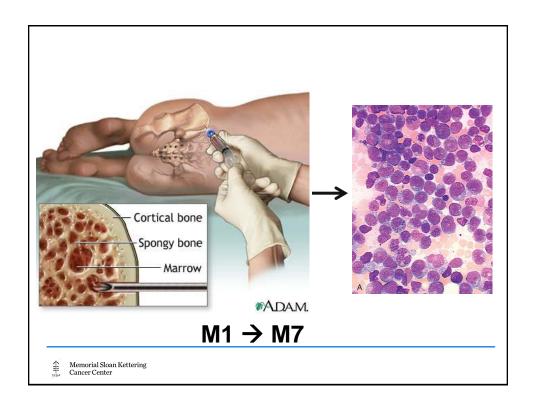

Welcome and Introductions

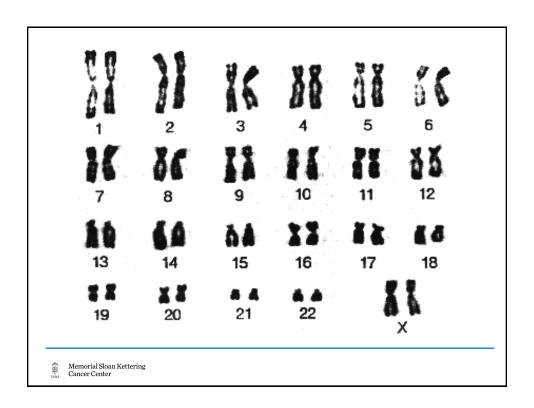

Strategies for Treating AML

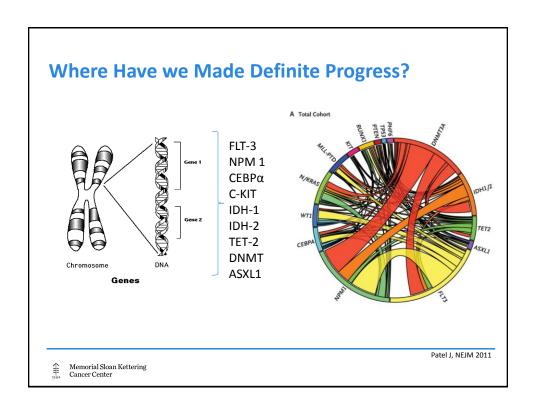
Eytan M. Stein, MD has disclosed he is a member of the Advisory Boards for Agios Pharmaceuticals, Celgene, and Seattle Genetics.

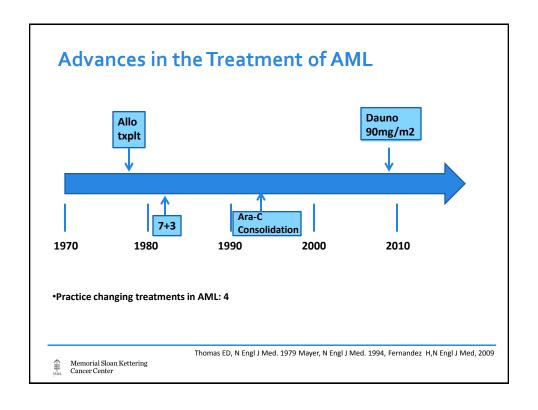


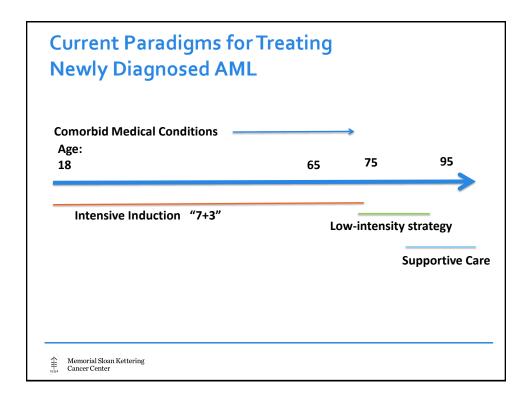


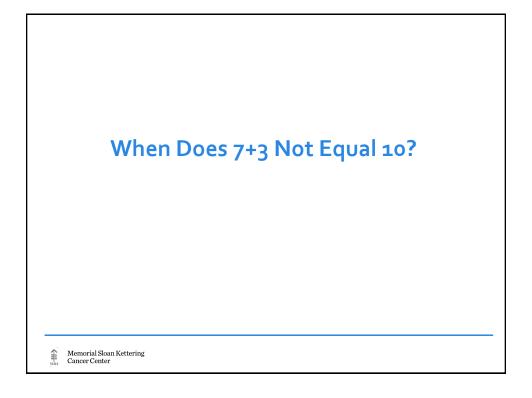

Basic Facts

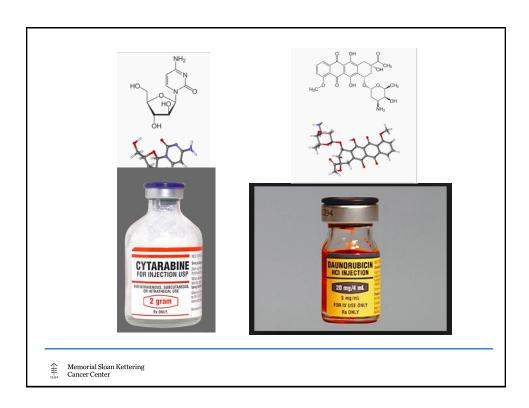

- Most patients diagnosed over age 6o
- Median age of 66 years at diagnosis
- Rapidly rising incidence over age 50
 - De Novo
 - Secondary
 - MDS/MPN
 - Therapy-related



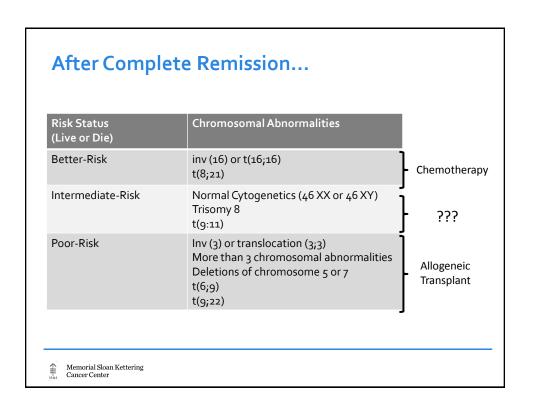

www.seer.cancer.gov

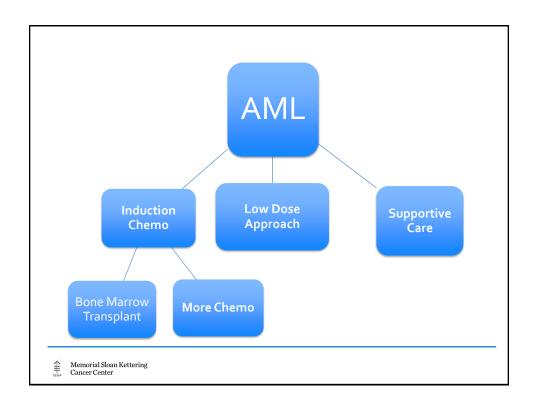


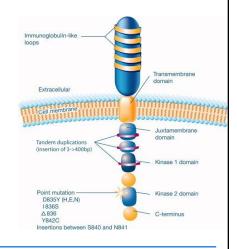







SUN	MON	TUES	WED	THURS	FRI	SAT
30	31					1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

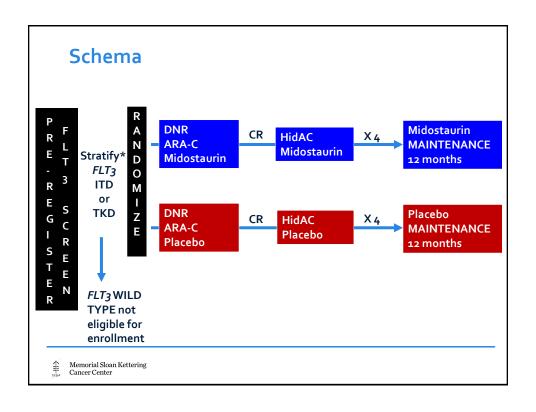

8

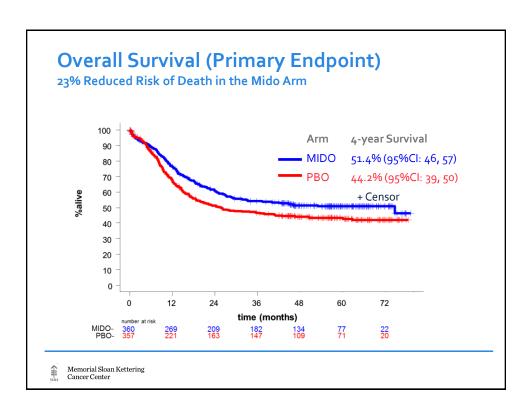


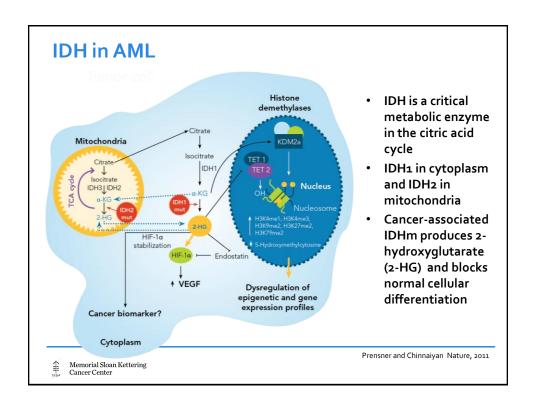
FLT₃ Inhibitors in the Treatment of Acute Myeloid Leukemia

- FLT-3 ITD found in 30% of cytogenetically normal AML
- Constitutive activation of FLT-3 receptor
- Confers a poor prognosis
- Multiple attempts to target FLT-3

Cancer; pages 3293-3304, 11 FEB 2011 DOI: 10.1002/cncr.25908


Memorial Sloan Kettering Cancer Center




A Phase III Randomized Double-blinded Study Of Chemotherapy +/- Midostaurin (PKC412) In Newly Diagnosed Adults aged 18-60 with FLT3 Mutated Acute Myeloid Leukemia (AML)

Richard M. Stone, Sumithra Mandrekar, Ben L Sanford, Susan Geyer, Clara D. Bloomfield, Konstanze Dohner, Christian Thiede, Guido Marcucci, Francesco Lo-Coco, Rebecca B. Klisovic, Andrew Wei, Jorge Sierra, Miguel A. Sanz, Joseph M. Brandwein, Theo de Witte, Dietger Niederwieser, Frederick R. Appelbaum, Bruno C. Medeiros, Martin STallman, Jurgen Krauter, Richard F. Schlenk, Arnold Ganser, Hubert Serve, Gerhard Ehninger, Sergio Amadori, Richard A. Larson, and Hartmut Dohner

Participants: ALLIANCE/CALGB, AMLSG, CETLAM, ECOG, EORTC, GIMEMA, NCIC, OSHO, PETHEMA, SAL, SWOG

Phase 1/2 Study Design

Dose Escalation

- Advanced Hematologic malignancies with IDH2 mutation
- Continuous 28 day cycles
- Cumulative daily doses of 50-650 mg

Expansion Phase I

Relapsed/Refractory-AML age ≥60, or any age if relapsed post-BMT

Relapsed/Refractory-AML age <60, excluding pts relapsed post-BMT

Untreated AML pts age ≥60 who decline standard of care

Any hematologic malignancy ineligible for other arms

Phase 2

AG-221 100 mg PO QD

RR-AML (N ≈ 125)

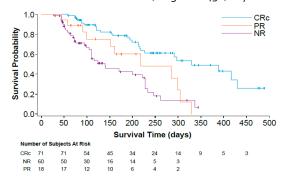
Key Endpoints:

- Safety, tolerability, MTD (maximum tolerated dose) DLTs (dose limiting toxicities
- Response rates as assessed by local investigator per IWG (International Working Group) criteria
- · Assessment of clinical activity
 - Memorial Sloan Kettering Cancer Center

Response

	RR-AML (n = 159)	Untreated AML (n = 24)	MDS (n = 14)	AII (N = 209)
Overall Response (CR, CRp, CRi, mCR, PR)	59 (37%) [95%CI: 30%, 45%]	10 (42%) [22%, 63%]	7 (50%) [23%, 77%]	79 (38%) [31%, 45%]
CR	29 (18%) [95%CI: 13%, 25%]	4 (17%) [5%, 37%]	3 (21%) [5%, 51%]	37 (18%) [13%, 24%]
CRp	1 (1%)	1 (4%)	1 (7%)	3 (1%)
CRi	3 (2%)	0	0	3 (1%)
mCR	9 (6%)	1 (4%)	3 (21%)	14 (7%)
PR	17 (11%)	4 (17%)	0	22 (11%)
SD	72 (45%)	9 (38%)	6 (43%)	96 (46%)
PD	10 (6%)	1 (4%)	0	11 (5%)
Not evaluable	18 (11%)	4 (17%)	1 (7%)	23 (11%)

Antileukemic Activity and Tolerability of ASP2215 ≥80 mg in **FLT3 Mutation-Positive Subjects** with Relapsed or Refractory Acute Myeloid Leukemia: Results from a Phase 1/2, Open-Label, Dose-**Escalation/Dose-Response Study**


Jessica K. Altman¹; Alexander E. Perl²; Jorge Cortes³; Mark Levis⁴; Catherine Smith⁵; Mark Litzow⁶; Maria R. Baer⁷; David Claxton⁸; Harry Erba⁹; Stan Gill¹⁰; Stuart Goldberg¹¹; Joseph Jurcic¹²; Richard A. Larson¹³; Charles Liu¹⁰; Ellen Ritchie¹⁴; Briana Sargent¹⁰; Gary Schiller¹⁵; Alexander Spira¹⁶; Stephen Strickland¹⁷; Raoul Tibes¹⁸; Celalettin Ustun¹⁹; Eunice S. Wang²⁰; Robert Stuart²¹; Claudia Baldus²²; Christoph Röllig²³; Andreas Neubauer²⁴; Giovanni Martinelli²⁵;

Memorial Sloan Kettering Cancer Center

Overall Survival by Response in FLT3+ Subjects Treated with ≥80 mg Gilteritinib

- Across all FLT₃+ subjects treated with gilteritinib ≥80 mg:
 - Median duration of response was 111 (range: 8–383) days
 - Median time to best response^b was 32 (range: 26–364) days
 - Median overall survival was 218 (range: 12-430) days

CHRYSALIS

Memorial Sloan Kettering Cancer Center

a Duration of response was calculated from the first observed response of PR or better. ^bTime to best response was only evaluated for subjects who achieved best response of PR or better.

SGN-CD33A Plus Hypomethylating Agents: A Novel, Well-Tolerated Regimen with High Remission Rate in Frontline Unfit AML

Amir T. Fathi, MD¹, Harry P. Erba, MD, PhD², Jeffrey E. Lancet, MD³, Eytan M. Stein, MD⁴, Roland B. Walter MD, PhD, MS⁵, Daniel J. DeAngelo, MD, PhD⁶, Stefan Faderl, MD७, Anand Jillella, MD⁶, Farhad Ravandi, MD⁶, Anjali S. Advani, MD¹⁰, Dale Bixby, MD, PhD¹², Tibor Kovacsovics, MD¹², Megan M. OʻMeara, MD¹³, Dana A. Kennedy, PharmD¹³, Anthony S. Stein, MD¹⁴

³Massachusetts General Hospital Cancer Center, ²University of Alabama-Birmingham, ³Moffitt Center, ⁴Memorial Sloan Kettering Cancer Center, ⁵Fred Hutchinson Cancer Research Center, ⁵Dana-Farber Cancer Institute, ⁷Hackensack University Medical Center, ⁵Winship Cancer Institute-Emory University School of Medicine, ⁹MD Anderson – University of Texas, ³⁰Cleveland Clinic, ³¹University of Michigan Comprehensive Cancer Center, ³²Huntsman Cancer Institute-University of Utah, ³³Seattle Genetics, Inc., ³⁴Gehr Family Center for Leukemia Research, City of Hope

ASH 2015, Orlando, FL, December 5 - 8, 2015, Abstract No. 454

Cancer Center

Vadastuximab Talirine (SGN-CD33A; 33A) Proposed Mechanism of Action in Combination with HMA Anti-CD33 antibody, engineered cysteines to enable uniform site-specific conjugation Cleavable dipeptide linker, highly stable in circulation Pyrrolobenzodiazepine (PBD) dimer, binds DNA with high intrinsic affinity Apoptotic cell death Binds to Increased PBD dimer binding CD33 to DNA DNA rnalized and Increased CD₃₃ cell surface density Vadastuximab talirine (SGN-CD33A; 33A) is an investigational agent, and its safety and efficacy have not yet been established. © 2015 Seattle Genetics, Inc. All rights reserved. Memorial Sloan Kettering

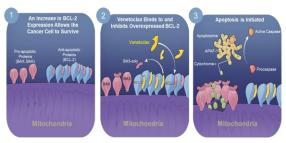
Best Clinical Response per Investigator

Efficacy Evaluable Patients	Azacitidine (N=11)	Decitabine (N=12)	Total (N=23)
CR	3	3	6
CRi (n)*	2	1	3
CRi (p)**	3	3	6
Resistant Disease	3	5	8
Remission Rate	73%	58%	65%

^{*} CRi (n)= CR with platelets ≥100k, incomplete neutrophil recovery

- Time to remission ~2 cycles
- Durability and survival in patients with CR/CRi
 - 14/15 (93%) alive at last follow-up
 - 13/15 (87%) maintain remission (range, 0.7+ to 33.6 weeks)
- Responses achieved in higher-risk patients
 - Underlying myelodysplasia (80%, n=10)
 - Adverse cytogenetics (89%, n=9)

Memorial Sloan Kettering Cancer Center


A Phase 1b Study of Venetoclax
(ABT-199/GDC-0199) in Combination
with Decitabine or Azacitidine in
Treatment-Naive Patients with
Acute Myelogenous Leukemia Who
Are ≥65 Years and Not Eligible for
Standard Induction Therapy

Courtney DiNardo*¹, Daniel Pollyea*², Keith Pratz³, Michael Thirman⁴, Anthony Letai⁵, Andrew Wei⁵, Martha Arellano², Mark Frattini³, Brian Jonas², Joel Leverson¹º, Ming Zhu¹º, Martin Dunbar¹º, Nancy Falotico¹º, Rachel Kirby¹º, Suresh Agarwal¹º, Mack Mabry¹º, Jalaja Potluri¹º, Rod Humerickhouse¹⁰, Hagop Kantarjian¹, Marina Konopleva¹

¹University of Texas MD Anderson Cancer Center, Houston, TX; ²University of Colorado School of Medicine, Aurora, CO; ³Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; ⁴University of Chicago Medical Center, Chicago, IL; ⁵Dana-Farber Cancer Institute, Boston, MA; ⁶The Alfred Hospital, Melbourne, Victoria, Australia; ⁷Emory University, Atlanta, GA; ⁸Columbia University Medical Center, New York, NY; ⁹UC Davis Comprehensive Cancer Center, Sacramento, CA; ¹⁰AbbVie Inc., North Chicago, IL *Both authors contributed equally to this work.

^{**} CRi (p)= CR with ANC ≥1000, incomplete platelet recovery

Venetoclax: Selective BCL-2 Inhibitor

- Venetoclax is a potent, orally bioavailable agent¹ with demonstrated single-agent activity in
 - AML cell lines and primary patient samples²
 - Heavily pretreated relapsed/refractory AML patients³
- Venetoclax was shown to synergize with HMA in preclinical models, suggesting that combination with HMA may be a promising approach in AML⁴
- Herein is reported an ongoing phase 1b, open-label, nonrandomized, dose-escalation trial of venetoclax in combination with DEC or AZA in older (≥65 years), treatment-naive AML patients (NCTo2203773)

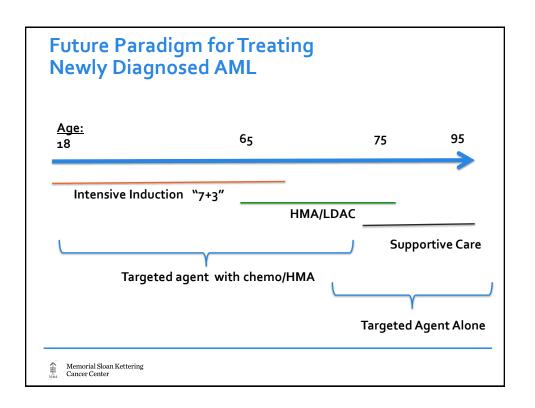
. I. Souers A, et al. Nat Med. 2013;19:202-8; 2. Pan R, et al. Cancer Discov. 2014;4:362-75; 3. Konopleva M, et al. 56th Annual American Society of Hematology; December 6–9, 2014; Abstract 118; 4. Tsao T, et al. Ann Hematol. 2012;91:1861-70.

Memorial Sloan Kettering Cancer Center

37

Best Responses in All Evaluable Patients in All Cohorts

Best Response, n (%)	VEN + DEC 400 mg (n=6)	VEN + DEC 800 mg (n=12)	VEN + AZA 400 mg (n=4)	VEN + AZA 800 mg (n=12)	ITT Responses (N=34)
CR	2 (33)	2 (17)	3 (75)	5 (42)	12 (35)
CRi	1 (17)	6 (50)	1 (25)	4 (33)	12 (35)
PR	0	2 (17)	0	0	2 (6)
MLFS	0	1(8)	0	0	1(3)
RD	1 (17)	1(8)	0	2 (17)	4 (12)
Not evaluable ^a	2 (33)	0	0	1(8)	3 (9)
ORR (CR/CRi/PR) CR+CRi	3 (50) 3 (50)	10 (83) 8 (67)	4 (100) 4 (100)	9 (75) 9 (75)	26 (76) 24 (71)


^aThree of the 34 patients discontinued prior to the first disease assessment.

Memorial Sloan Kettering Cancer Center

19

The Future is Bright

- We increasingly understand the genetics of AML
- Novel targeted therapies are oral, well tolerated and lead to impressive response rates.
 - Inhibitors of FLT-3
 - Inhibitors of IDH1 and IDH2
 - Inhibitors of BCL-2
- Antibody-drug conjugates in combination with Decitabine or 5-aza show exciting promise

Question & Answer Session

The speaker's slides are available for download at www.LLS.org/programs

Resources to Make Informed Treatment Decisions

The Leukemia & Lymphoma Society (LLS) offers:

- Live, Online Chats provide a friendly forum to share experiences with others.
 - ➤ WEBSITE: www.LLS.org/chat
- What to ask: For a list of suggested questions to ask about certain topics, download and print any of the following guides.
 - > WEBSITE: www.LLS.org/whattoask
- Free education materials: www.LLS.org/publications
- Information Resource Center: Speak one-on-one with an Information Specialist who can assist you through cancer treatment, financial, and social challenges.
 - ➤ EMAIL: infocenter@LLS.org, TOLL-FREE PHONE: (800) 955-4572