Introduction

Cancer therapies have always leveraged the differences between normal and neoplastic cells, and over recent years our understanding of precisely what is different has expanded exponentially. As DNA sequencing technology has uncovered more and more genetic and molecular defects driving blood cancers, therapies have evolved away from “one-size-fits-all” to more targeted approaches, all with a goal of improving clinical outcomes. Molecular profiling helps identify the precise molecular changes associated with malignancy and frequently guides diagnosis, treatment, and prognosis for blood cancers. There are numerous targeted therapies on the market for hematologic malignancies and many more in clinical trials.

While advances in genetic analysis have shed welcome light on precise molecular changes driving malignancies, incorporating molecular profiling into routine practice is not without challenges. DNA sequencing reports can deliver overwhelming amounts of difficult-to-interpret information, leaving clinicians uncertain of which mutations are clinically relevant to determine the best course of action. It is challenging to keep pace with the extremely rapid development of newly identified targets or indications for approved therapies. There are access and reimbursement difficulties, particularly for targeted therapies not FDA-approved for a particular malignancy that may harbor a druggable aberration. Finally, patients need to be educated about molecular profiling in order to better inform their decision-making and allow them to be fully engaged partners in their care.

This Fact Sheet provides a broad overview of the basics of molecular profiling and how results can inform care for patients with hematologic malignancies. Additional resources for clinicians and patients, providing detail beyond the scope of this Fact Sheet, are provided. Highlighted terminology in blue is defined in the glossary found on pages 12-13.

Highlights

• The goal of molecular profiling is to identify biomarkers associated with malignancies that can serve as therapeutic targets, inform diagnosis or prognosis, or gauge response to therapy.
• Standard techniques such as chromosome banding, fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and flow cytometry have been used for years to investigate hematologic malignancies. These techniques are limited by low resolution, and they can miss genome-wide changes.
• Chromosomal microarrays (CMAs) enable whole genome “molecular karyotyping” in a single assay that does not require viable cells.
• CMAs have become routine for identifying copy number losses or gains of whole or segmented chromosomes.
• Next generation sequencing (NGS) technologies have allowed the detection of multiple DNA aberrations across multiple genes.
• Targeted mutation panels sequence only genes suspected or known to be associated with a malignancy. There are many commercially available gene panels for hematologic malignancies.
• Resources are emerging to assist clinicians in identifying the right test for the right patient at the right time.
• Molecular tumor boards and online resources are available to assist in the interpretation of data generated from molecular investigations of hematologic malignancies.
Molecular profiling: The basics

The goal of molecular profiling is to identify biomarkers associated with malignancy. This can include the identification of molecular targets of approved therapies (or those in clinical trials), or identification of biomarkers that can inform prognosis, disease progression, or gauge response to therapy. Molecular pathology analysis is rapidly becoming a critical tool for uncovering the tumor biology that can drive optimal therapeutic decisions.¹

Types of genetic alterations

Biomarkers associated with cancer most frequently arise from mutations resulting in changes to the expression patterns or activities of genes or proteins.² Mutations can be either somatic (acquired during a person's lifetime), or germline (mostly inherited). Somatic mutations are present only in certain cells, while germline mutations are present in virtually every cell in the body.

Common somatic mutations that have been identified in hematologic malignancies include³,⁴:

- Substitutions, in which one base (or more) in the DNA sequence is replaced by a different base
- Insertion/deletions (indels), small insertions or deletions of 1-1,000 bases⁵
- Copy number alterations (CNAs), in which large segments of DNA (from a few kilobases [kb] to entire chromosomes) are gained or lost⁶
- Gene fusions, created by joining 2 different genes from 2 different chromosomes
- Inversions, in which a segment of a chromosome breaks off and reattaches in the opposite direction

Tests used to identify biomarkers

Karyotyping

Conventional cytogenetics, including chromosome analysis via karyotyping, has been used for decades to identify chromosome abnormalities in hematologic malignancies.⁴ Karyotyping is a technique that produces an image of an individual’s chromosomes. Chromosome banding refers to light and dark regions along the length of a chromosome after staining with a dye. This technique provides a low-resolution, whole genome scan that can identify many recurrent structural chromosome abnormalities, fusion gene translocations, and inversions common in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL).⁴

Karyotyping is an important part of the standard investigation of many hematologic malignancies, although due to its low resolution many aberrations may be missed. In fact, abnormal karyotypes are seen in only 20-40% of patients with multiple myeloma (MM), 60% of those with ALL, 40% of those with CLL and 40%-50% of those with AML.⁷ (The yield in CLL can be low due to the poor growth of these cells in culture).

Fluorescence in situ hybridization (FISH)

FISH is another standard technique that uses fluorescently-labeled DNA probes to detect aberrations at the gene level, including rearrangements, translocations and CNAs.¹,⁷ It has a higher resolution than karyotyping and can be performed on fresh or paraffin-embedded tissue and interphase cells from liquid tumor cells.⁸ FISH is typically used to probe genomic regions from 100-600kb, not the entire genome, and is commonly used to complement karyotyping.⁷

In hematologic malignancies, FISH is capable of detecting druggable fusion genes (PML-RARA, BCR-ABL1) in addition to cytogenetic aberrations of diagnostic or prognostic value. Most laboratories use commercially available probes targeted to specific regions known to be important for certain hematologic malignancies (i.e., FISH panels for AML or ALL). FISH is recommended as a priority test in MM and CLL, as it has been shown to identify up to 95% of patients with MM, 80% of those with CLL, and ~89% of ALL cases.⁷

While karyotype and FISH are standard practice for investigating hematologic malignancies, studies have demonstrated that they can miss genome-wide changes, highlighting the need for techniques capable of higher resolution investigation across the entire genome.⁷

Chromosomal Microarrays (CMAs)

These techniques, including array comparative genomic hybridization (aCGH) assays and single nucleotide polymorphism (SNP) arrays, enable whole-genome molecular karyotyping in a single assay that does not require viable cells.⁶,⁸,⁹ They can be used for identifying copy number losses or gains of whole (or segmental) chromosomes.
aCGH-based assays compare genomic DNA from a tumor sample with that of a normal reference DNA sample. Each set of DNA is fragmented, labeled (a different fluorescent label is used for patient vs control DNA), and allowed to hybridize to DNA probes that have been immobilized on a solid surface (typically a glass chip). Following hybridization, an imaging system scans the chip to measure the relative fluorescence intensity associated with each probe, which is proportional to the copy numbers present. Depending on the number of probes and their distribution, aCGH assay can provide a genome-wide analysis at a resolution of ~50kb. Microrays can detect CNAs such as aneuploidies, microdeletions and duplications, chromothripsis and amplifications.

A SNP array is similar to aCGH but uses DNA probes from regions in the genome that show differences between individuals at a single base pair (a “single nucleotide polymorphism”, or SNP). SNP arrays can detect a specific genotype at the location of the probe. As opposed to aCGH, which measures the difference in fluorescence intensity between DNA from a tumor vs a control sample, SNPs measure the absolute probe intensities between the tumor DNA and a set of normal control samples that have been analyzed separately, normalized, and combined into a reference set (this is referred to as an in silico comparison).

The resolution of a specific array depends on the size and types of probes used and their distribution across the genome. Potential indications for CMAs for certain hematologic malignancies are found in Table 1.

List of abbreviations
aCGH: Array comparative genomic hybridization
ALL: Acute lymphoblastic leukemia
AML: Acute myeloid leukemia
B-ALL: B-cell acute lymphoblastic leukemia
CLL: Chronic lymphocytic leukemia
CMA: Chromosomal microarray
CML: Chronic myeloid leukemia
CN-LOH: Copy neutral loss of heterozygosity
CNA: Copy number alterations
FISH: Fluorescence in situ hybridization
FL: Follicular lymphoma
IHC: Immunohistochemistry
Indel: Insertion/deletion
MCL: Mantle cell lymphoma
MDS: Myelodysplastic syndromes
MM: Multiple myeloma
MPN: Myeloproliferative neoplasms
MRD: Minimal (or measurable) residual disease
MTB: Molecular tumor board
NGS: Next generation sequencing
PCR: Polymerase chain reaction
Ph+: Philadelphia chromosome-positive
qPCR: Quantitative PCR
SLL: Small lymphocytic lymphoma
SNP: Single nucleotide polymorphism
T-ALL: T-cell acute lymphoblastic leukemia
VUS: Variants of uncertain significance
WES: Whole exome sequencing
WGS: Whole genome sequencing

SNP arrays can reveal copy number information as well as copy neutral loss of heterozygosity (CN-LOH) (identified in myeloid malignancies) and polyploidies. Since identification of balanced rearrangements and fusion genes lend important prognostic information in hematologic malignancies, SNP array analysis should be accompanied by FISH or targeted sequencing panels.
Facts about Molecular Profiling

Table 1. Microarray studies in select hematologic neoplasms® (adapted from Peterson JF, et al. 2018)

<table>
<thead>
<tr>
<th>Neoplasms</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelodysplastic syndromes (MDS)</td>
<td>• To detect recurrent copy number alterations (e.g., del(5q), del(7q)/-7;+8, del(13q)/-13, del(11q), del(17p), del(20q))</td>
</tr>
<tr>
<td></td>
<td>• Following karyotype or FISH results</td>
</tr>
<tr>
<td></td>
<td>o To resolve complex results</td>
</tr>
<tr>
<td></td>
<td>o To confirm normal results</td>
</tr>
<tr>
<td></td>
<td>• If no metaphase cells are available for karyotype</td>
</tr>
<tr>
<td>B-lymphoblastic leukemia/lymphoma</td>
<td>• To distinguish hyperdiploidy from pseudohyperdiploidy</td>
</tr>
<tr>
<td></td>
<td>• To detect amplification of chromosome 21 (or to distinguish from polysomy 21)</td>
</tr>
<tr>
<td></td>
<td>• To detect small gene deletions not detectable by karyotype or FISH</td>
</tr>
<tr>
<td></td>
<td>• To confirm normal karyotype or FISH results</td>
</tr>
<tr>
<td></td>
<td>• Potential routine use for all newly diagnosed patients</td>
</tr>
<tr>
<td>Chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL)</td>
<td>• To detect recurrent CNAs (e.g., del(11q), +12, del(13q), del(17p) complex karyotypes</td>
</tr>
<tr>
<td></td>
<td>• Potential routine use for all newly diagnosed patients</td>
</tr>
<tr>
<td>Burkitt-like lymphoma with 11q aberrations</td>
<td>• To detect 11q aberrations in cases that resemble Burkitt lymphoma but lack MYC rearrangements</td>
</tr>
</tbody>
</table>

Polymerase chain reaction (PCR)

PCR is a technique that rapidly produces large quantities of a precise DNA segment from minute quantities of starting material. PCR is an automated technique that involves denaturing, or separating, the 2 DNA strands, using DNA polymerase to synthesize 2 new DNA strands, then repeating the process as many as 30 or 40 times. Quantitative PCR (qPCR or real-time PCR) can determine the absolute or relative quantities of a known sequence in a starting sample, typically by quantitating fluorescence from a dye that binds to double-stranded DNA.

Because hematologic malignancies can be driven by single genetic aberrations that make good PCR targets, qPCR is an excellent method for quantifying minimal residual disease (MRD).12

Next Generation Sequencing

Advances in next generation sequencing (NGS) technology have allowed molecular profiling of hematologic malignancies to evolve to detection of multiple DNA aberrations across multiple genes, including inversions/deletions, copy number variations, translocations, and gene fusions.1,3 NGS has been invaluable in the research arena in the discovery of novel mutations associated with hematologic malignancies and it has more recently moved into clinical diagnostics.4

In NGS, millions of small DNA fragments are immobilized on a solid surface, amplified (copied), and sequenced simultaneously. During sequencing, a signal (i.e., light, pH change) is generated and detected when each base is incorporated. The resulting “reads” are then aligned to a reference sequence and analyzed. NGS requires intense computational analysis and generates voluminous data13—a continuing challenge has been developing the tools and protocols that optimally translate the resulting information into better patient care.1

NGS analyses can range from the testing of multiple genes in targeted gene panels to whole exome or whole genome sequencing of cancer cell DNA.14

Whole exome sequencing (WES) captures the DNA sequence of only the protein-coding regions of the genome, which represents only ~1% of the genome. WES is less costly than whole genome sequencing (WGS), but cannot
identify any mutations that lie outside the coding regions, nor can it identify chromosomal translocations or inversions with breakpoints located outside coding regions.

Whole genome sequencing (WGS) captures the sequence of the entire genome. While many biomarkers now known to be important in hematologic malignancies were discovered with WGS (e.g., *DNMT3, IDH1/2*), and the information it yields is not limited to preselected targets, it is not routinely performed in the clinical setting. WGS is time consuming, expensive, and results can be difficult to interpret, particularly when there is a low tumor burden.

In addition, for both WGS and WES, a non-tumor germline control tissue sample from each patient must be analyzed simultaneously to identify acquired mutations that may be drivers of malignancy. To date, WES and WGS are largely limited to the research space.

Targeted gene panels (mutation panels)

This NGS approach sequences only genes or areas suspected or known to be associated with a particular malignancy (“hotspot” regions known to contain mutations). There are scores of available gene panels for hematologic malignancies (with largely overlapping target genes/mutations). Examples include:

- GeneDX: https://www.genedx.com/
- University of Chicago: https://dnatesting.uchicago.edu/
- Prevention Genetics: https://www.preventiongenetics.com/
- Foundation Medicine: https://www.foundationmedicine.com/resources
- Blueprint Genetics: https://blueprintgenetics.com/tests/panels/

Table 2 is an overview of the types of cytogenomic tests currently used in clinical practice.

Table 2. Overview of cytogenomic tests in current clinical practice

<table>
<thead>
<tr>
<th>Technique</th>
<th>Detects</th>
<th>Resolution</th>
<th>Whole genome?</th>
<th>Requires dividing cells?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karyotype</td>
<td>Chromosome structural abnormalities, translocations (fusion genes), inversions, balanced rearrangements</td>
<td>Very low</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fluorescence in situ hybridization (FISH)</td>
<td>Changes in targeted genomic regions with diagnostic or prognostic value for a particular malignancy. Can detect fusion genes, balanced rearrangements and CNAs</td>
<td>~100kb-300kb</td>
<td>No</td>
<td>Varies depending on application</td>
</tr>
<tr>
<td>SNP microrarray analysis</td>
<td>CNAs, copy neutral loss of heterozygosity (CN-LOH), polyploidies. Does not identify balanced rearrangements or fusion genes</td>
<td>~3kb-10kb</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Next generation sequencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targeted gene panels</td>
<td>Changes at the DNA level in selected areas of interest (hotspots with known mutations)</td>
<td>< 1kb</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Whole exome sequencing (WES)</td>
<td>Changes at the DNA level in the protein coding region and immediately surrounding regions</td>
<td>< 1kb</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Whole genome sequencing (WGS)</td>
<td>Changes at the DNA level, including point mutations (single-nucleotide variants, SNVs), indels, translocations, gene fusions, CNAs and unexpected structural changes</td>
<td>< 1kb</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
For all NGS approaches, when seeking to identify genetic alterations that result in a druggable target, it is important to distinguish **driver mutations**, which have been established to play a direct role in the development or maintenance of malignancy, from **passenger mutations**, which are commonly found in most cancers but do not confer a selective advantage and are not actionable. An individual malignancy may have more than one driver mutation.

Immunohistochemistry (IHC) and flow cytometry: Protein-level information

Along with karyotyping, IHC is another laboratory technique with variable sensitivity and specificity for detecting actionable biomarkers that has been in routine use for years. IHC is a technique in which a biomarker-specific antibody is applied to a tissue or blood sample, which is then linked to an enzyme or fluorescent tag that permits visualization with fluorescence microscopy. IHC can detect changes at the protein level resulting from any number of genetic aberrations including gene amplifications, DNA rearrangements and point mutations. Flow cytometry is based on the same principles but is performed on a liquid sample and the signal is read on a flow cytometer.

What to test for

Multiple molecular diagnostic tests and testing platforms are available from both hospital and commercial labs. Clinicians can be hard pressed to determine the right test for the right patient at the right time, and discern which tests will provide information that can be used to guide treatment decisions. Specific guidance for which molecular tests are warranted during the course of diagnosis, treatment, and disease monitoring for every hematologic malignancy is beyond the scope of this Fact Sheet.

The Leukemia & Lymphoma Society (LLS), in conjunction with the American Society of Hematology (ASH) and the France Foundation, has developed the **Genomics Essentials in Hematologic Malignancies (GENOM) Curriculum**, consisting of eleven 15-30 minute learning modules covering the foundations of genomics in the context of hematologic malignancies, and how results from these tests can be applied clinically in order to optimize outcomes for patients. A link to this comprehensive resource is found [here](#).

As an example of testing guidance, European guidelines for the cytogenomic investigation of hematologic malignancies were recently published. The testing recommendations in Table 3 have been adapted from this resource. For testing recommendations for ALL, which vary by age, see Table 4.
Table 3. Recommendations for testing\(^{15}\) (adapted from Rack KA, et al. 2019)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Test</th>
<th>Requirement</th>
<th>Suggested method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic myeloid leukemia (CML)</td>
<td>• Karyotype</td>
<td>Mandatory</td>
<td>Chromosome banding</td>
</tr>
<tr>
<td></td>
<td>• BCR-ABL1 gene fusion</td>
<td>Mandatory</td>
<td>FISH (at diagnosis only), PCR</td>
</tr>
<tr>
<td></td>
<td>• ABL1 mutation (when resistant to therapy)</td>
<td>Mandatory</td>
<td>PCR, NGS</td>
</tr>
<tr>
<td></td>
<td>• MRD at baseline</td>
<td>Indicated</td>
<td></td>
</tr>
<tr>
<td>Myeloproliferative neoplasms (MPN)</td>
<td>• JAK2, CALR, MPL mutations</td>
<td>Mandatory</td>
<td>PCR, NGS</td>
</tr>
<tr>
<td></td>
<td>• Rule out BCR-ABL1 gene fusion</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Karyotype</td>
<td>Indicated</td>
<td>Chromosome banding</td>
</tr>
<tr>
<td>Myeloid/lymphoid neoplasms with eosinophilia</td>
<td>• Recurrent gene fusions: PDGFRA, PDGFRB, FGFR1, PCM1-JAK2</td>
<td>Strongly recommended</td>
<td>FISH, PCR, NGS</td>
</tr>
<tr>
<td></td>
<td>• Karyotype</td>
<td>Indicated</td>
<td>Chromosome banding</td>
</tr>
<tr>
<td>Myelodysplastic syndromes (MDS)</td>
<td>• Karyotype</td>
<td>Mandatory</td>
<td>Chromosome banding</td>
</tr>
<tr>
<td></td>
<td>• Targeted chromosome abnormalities: -5/-5q, -7/-7q, inv3/3q (MECOM); extended panel: +8, -20q, 17p (TP53)</td>
<td>Recommended (if karyotype fails or where there is morphological suspicion of specific abnormality)</td>
<td>FISH, SNP array, PCR, NGS (all not routinely done)</td>
</tr>
<tr>
<td></td>
<td>• High resolution chromosome analysis, acquired CN-LOH</td>
<td>Recommended</td>
<td>SNP array (not necessarily routine)</td>
</tr>
<tr>
<td></td>
<td>• Mutation analysis of candidate genes</td>
<td>Recommended</td>
<td>PCR, NGS</td>
</tr>
<tr>
<td>Acute myeloid leukemia (AML)</td>
<td>• Karyotype</td>
<td>Mandatory</td>
<td>Chromosome banding</td>
</tr>
<tr>
<td></td>
<td>• Gene mutations: NPM1, DNMT3A, IDH1, IDH2, CEBPA, RUNX1, FLT3, TP53, ASXL1 (among others)</td>
<td>Mandatory</td>
<td>PCR, NGS</td>
</tr>
<tr>
<td></td>
<td>• Recurrent gene fusions: PML-RARA (if there is clinical suspicion), CBFB-MYH11, RUNX1-RUNX1T1, KMT2A rearrangement, MECOM, DEK-NUP214, MECOM</td>
<td>Recommended (to inform prognosis)</td>
<td>NGS, including DNTM3, IDH1, IDH2, and other genes, is standard.</td>
</tr>
<tr>
<td></td>
<td>• Enriched in pediatric AML: NUP98 rearrangements, CBFA2T3-GLI52, RBM15-MKL1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. CONTINUED. **Recommendations for testing**15 (adapted from Rack KA, et al. 2019)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Test</th>
<th>Requirement</th>
<th>Suggested method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute lymphoblastic leukemia (ALL)</td>
<td>• Recurrent gene fusions (age-related priority), including ETV6-RUNX1 and TCF3-PBX1 in pediatrics. KMT2A rearrangements, BCR-ABL1, and BCR-ABL1-like across the age spectrum. • Ph-ALL</td>
<td>Mandatory</td>
<td>FISH: • for 12;21 in pediatrics • for 4;11 in all patients • for BCR-ABL in all patients PCR, NGS</td>
</tr>
<tr>
<td></td>
<td>• Hypodiploidy/Hyperdiploidy</td>
<td>Recommended</td>
<td>Chromosome banding, SNP array, FISH</td>
</tr>
<tr>
<td></td>
<td>• Recurrent microdeletions</td>
<td>Recommended in pediatric ALL</td>
<td>MLPA, array, PCR, NGS</td>
</tr>
<tr>
<td></td>
<td>• Karyotype (may not be required for all pediatric patients)</td>
<td>Mandatory</td>
<td>Chromosome banding</td>
</tr>
<tr>
<td></td>
<td>• MRD at baseline</td>
<td>Indicated</td>
<td>PCR, NGS, or flow cytometry</td>
</tr>
<tr>
<td>Chronic lymphocytic leukemia (CLL)</td>
<td>• Deletion 13q14, ATM, TP53, trisomy12</td>
<td>Mandatory</td>
<td>FISH, SNP array, NGS</td>
</tr>
<tr>
<td></td>
<td>• TP53 mutation/IGHV mutational status</td>
<td>Mandatory</td>
<td>PCR, NGS</td>
</tr>
<tr>
<td></td>
<td>• Karyotype</td>
<td>Indicated</td>
<td>Chromosome banding</td>
</tr>
<tr>
<td>Multiple myeloma (MM)</td>
<td>• t(4;14), t(14;16), deletion TP53 gain 1q/del(1p)</td>
<td>Recommended</td>
<td>FISH for gene rearrangements</td>
</tr>
<tr>
<td></td>
<td>• t(11;14), t(14;20), ploidy status (extended panel)</td>
<td>Recommended</td>
<td>FISH or array, MLPA for copy number gains/losses</td>
</tr>
<tr>
<td>Other mature B-cell neoplasms</td>
<td>• Recurrent gene rearrangements (depending on differential diagnosis)</td>
<td></td>
<td>FISH</td>
</tr>
<tr>
<td></td>
<td>• MYC rearrangements (prognostic)</td>
<td></td>
<td>FISH</td>
</tr>
</tbody>
</table>
Table 4. Age-dependent recommendations for fusion gene investigations in ALL\(^\text{15}\)
(Adapted from Rack KA, et al. 2019)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Age</th>
<th>Recommended</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-cell acute lymphoblastic leukemia (B-ALL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 yr</td>
<td></td>
<td>KMT2A</td>
<td>ETV6-RUNX1, BCR-ABL1</td>
</tr>
<tr>
<td>>1 yr, < 25 yr</td>
<td></td>
<td>ETV6-RUNX1, BCR-ABL1, BCR-ABL1-like, DUX4 rearranged, ZNF384, then KMT2A and TCF3</td>
<td>—</td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td>BCR-ABL1, BCR-ABL1-like, then KMT2A and TCF3</td>
<td>ETV6-RUNX1</td>
</tr>
<tr>
<td>T-cell acute lymphoblastic leukemia (T-ALL)</td>
<td>Childhood and adult</td>
<td>—</td>
<td>TLX3, TLX1, KMT2A, TAL1, LMO2, ABL1, PICALM-MLLT10</td>
</tr>
</tbody>
</table>

Identification of druggable targets

Importantly, molecular profiling permits the identification of patients more likely to benefit from targeted therapies and experience fewer toxicities. The number of identified, druggable tumor-specific targets has grown exponentially in recent years.\(^1\) Table 5 lists targeted drugs that are FDA-approved or have demonstrated activity against hematologic malignancies.\(^1\)

As noted above, a malignancy may have more than one driver mutation, explaining in part why a single targeted therapy may not be effective – combination approaches with multiple targeted agents is an area of active investigation. Additionally, the oncogenic target may be necessary for normal cells to function, resulting in on-target, off-tumor effects.
Table 5. Targeted drugs for hematologic malignancies

(adapted from Malone ER, et al. 2020)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Therapy</th>
<th>Malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCL-2 protein expression, BRCA1 protein expression</td>
<td>Venetoclax (Venclexta<sup>®</sup>)</td>
<td>CLL, SLL, AML, CML<sup>*</sup></td>
</tr>
<tr>
<td>BCR/ABL1 fusion</td>
<td>Imatinib (Gleevec<sup>®</sup>)<sup>7</sup></td>
<td>Ph+CML, Ph+ALL</td>
</tr>
<tr>
<td></td>
<td>Dasatinib (Sprycel<sup>®</sup>)<sup>18</sup></td>
<td>MDS/myeloproliferative syndromes resulting from PDGFR gene rearrangements</td>
</tr>
<tr>
<td></td>
<td>Nilotinib (Tasigna<sup>®</sup>)<sup>19</sup></td>
<td>Ph+CM, Ph+ALL</td>
</tr>
<tr>
<td></td>
<td>Bosutinib (Bosulif<sup>®</sup>)<sup>20</sup></td>
<td>Ph+CML</td>
</tr>
<tr>
<td></td>
<td>Ponatinib (Iclusig<sup>®</sup>)<sup>21</sup></td>
<td>CML, Ph+ALL, T315I+CML, T315I+Ph+ALL</td>
</tr>
<tr>
<td>BRAF V600E/K mutations</td>
<td>Vemurafenib (Zelboraf<sup>®</sup>)<sup>22</sup></td>
<td>Hairy cell leukemia<sup>*</sup></td>
</tr>
<tr>
<td>PDGFRB rearrangement</td>
<td>Imatinib (Gleevec<sup>®</sup>)<sup>7</sup></td>
<td>MDS/myeloproliferative syndromes</td>
</tr>
<tr>
<td>FLT3 mutations</td>
<td>Midostaurin (Rydapt<sup>®</sup>)<sup>23</sup></td>
<td>AML, MCL</td>
</tr>
<tr>
<td></td>
<td>Gilteritinib (Xospata<sup>®</sup>)<sup>24</sup></td>
<td>AML</td>
</tr>
<tr>
<td>IDH1/2 mutations</td>
<td>Ivosidenib (Tibsovo<sup>®</sup>)<sup>25</sup></td>
<td>AML</td>
</tr>
<tr>
<td></td>
<td>Enasidenib (Idhifa<sup>®</sup>)<sup>26</sup></td>
<td>AML</td>
</tr>
<tr>
<td>PI3K mutation (PI3K alpha, delta)</td>
<td>Copanlisib (Aliqopa<sup>®</sup>)<sup>27</sup></td>
<td>FL</td>
</tr>
<tr>
<td>PI3K mutation (PI3K delta and gamma)</td>
<td>Duvelisib (Copiktra<sup>®</sup>)<sup>28</sup></td>
<td>CLL, SLL, FL</td>
</tr>
<tr>
<td>PI3K mutation (PI3K delta)</td>
<td>Idelalisib (Zydelig<sup>®</sup>)<sup>29</sup></td>
<td>CLL, FL, SLL</td>
</tr>
<tr>
<td>Jak2 V617F</td>
<td>Ruxolitinib (Jakafi<sup>®</sup>)<sup>30</sup></td>
<td>MPNs: polycythemia vera (PV), myelofibrosis (MF), essential thrombocytopenia (ET)*</td>
</tr>
<tr>
<td>ALK rearrangement</td>
<td>Crizotinib (Xalkori<sup>®</sup>)<sup>31</sup></td>
<td>Anaplastic large cell lymphoma*</td>
</tr>
<tr>
<td>PML-RARA fusion</td>
<td>All-trans retinoic acid (Vesanoid<sup>®</sup>)<sup>32</sup></td>
<td>Acute promyelocytic leukemia (APL)</td>
</tr>
<tr>
<td></td>
<td>Arsenic trioxide (Trisenox<sup>®</sup>)<sup>33</sup></td>
<td></td>
</tr>
</tbody>
</table>

[*]Not FDA-approved for this indication

Turning results into actionable information

As NGS technology becomes more efficient and less expensive and genomic analyses become more widely available, the amount and complexity of information clinicians must sift through and interpret to discern what is actionable becomes more challenging. Data provided from commercial NGS labs are not uniform, with some including many variants of uncertain significance (VUS) or ambiguous copy number alterations.¹⁴ In addition, with near daily publication of new information, it is very difficult for busy clinicians to keep pace with the development of newly identified targets, indications for new or approved therapies, and available clinical trials.
Molecular tumor boards

Practices across the country have adopted a molecular tumor board (MTB) model to assist in interpreting molecular profiling data and guide personalized therapy. Members of an MTB may include medical and radiation oncologists, surgeons, pathologists, molecular biologists, geneticists, genetic counselors, bioinformaticians, and a clinical-trial referral team. The goal of the team is to come together and determine treatment steps and best options for care, which could include clinical trials.

Online resources

Numerous up-to-date online resources are available to help interpret the results of data generated from molecular investigations of malignancies, including:

- **OncoKB.org**: A precision oncology knowledge base containing information about the effects and treatment implications of specific cancer gene alterations. It is developed and maintained by the Knowledge Systems group in the Marie Josée and Henry R. Kravis Center for Molecular Oncology at Memorial Sloan Kettering Cancer Center (MSK). OncoKB contains detailed information about specific alterations in 676 cancer genes curated from various sources, such as guidelines from the National Comprehensive Cancer Network (NCCN), American Society of Clinical Oncology (ASCO), ClinicalTrials.gov and the scientific literature.

- **My Cancer Genome®**: A precision cancer medicine knowledge resource for physicians, patients, caregivers and researchers providing up-to-date information on mutations, available therapies and clinical trials. Managed by the Vanderbilt-Ingram Cancer Center.

- **CIViCdb.org**: Clinical Interpretation of Variants in Cancer: An open-access, open-source community-driven resource with the goal of enabling precision medicine by providing a forum for dissemination of knowledge and active discussion of cancer genome alterations and their clinical significance. Managed by the McDonnell Genome Institute at Washington University School of Medicine.

- **The Cancer Genome Atlas Program (TCGA)**: A joint effort of the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) with an overarching goal of improving the diagnosis, treatment, and prevention of cancer. TCGA is a coordinated effort to accelerate understanding of the molecular basis of cancer through the application of genome analysis technologies.

Evolution of clinical trial design

With the goals of facilitating the approval of new drugs and more efficiently matching patients with appropriate targeted therapies based on results from genomic screens, traditional clinical trial design has undergone a shift to include master trials and basket trials.

Master Trials (or Umbrella Trials) involve multiple parallel arms operating under one overarching protocol. The Beat AML® Master Trial is an example. The trial sponsor is The Leukemia & Lymphoma Society (LLS), who brought together academic researchers, industry partners and clinical research organizations to collaborate on the trial. Patients diagnosed with AML are given a genomic screen (NGS) upon enrollment and are assigned a personalized therapy in a sub-study based on the results. The study design is flexible, with treatment arms adjusted as clinical data become available. To date, over 900 patients have been enrolled across 16 clinical trial sites.

Another example is the LLS PedAL trial, a global precision medicine master trial that will test multiple targeted therapies for pediatric acute leukemia simultaneously at up to 200 sites worldwide. The goal is to treat the first patient in 2021.

Basket Trials enroll patients on the basis of the underlying actionable genetic mutation, not on the basis of a particular type of cancer. The NCI-MATCH trial is an example, with 40 treatment arms currently exploring numerous genetic abnormalities and matched drugs in a large number of cancer types including leukemia, lymphoma and myeloma.

Resources for patients

Molecular profiling is complex, and patients need accurate, up-to-date, understandable information in order to be full partners in their care. The LLS has a host of resources available here, including:

- Understanding Genetics (Booklet)
- Cancer Molecular Profiling (Fact Sheet)
- Minimal Residual Disease (Fact Sheet)
Glossary

A

Aneuploidy: The presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any number of complete chromosome sets is called a euploid cell.

Array comparative genomic hybridization (aCGH): Used to compare genomic DNA from a tumor sample to that from a normal, reference DNA sample. DNA to be analyzed is fragmented, tagged with a fluorescent label (a different label is used for each set of DNA), and allowed to hybridize to DNA probes that have been spotted to a gene chip surface. An imaging system scans the chip to measure the relative fluorescence intensity associated with each probe, which is proportional to the copy numbers present.

Copy number alterations (CNAs): DNA mutations that involve small insertions or deletions of 1-1,000 bases. A genomic mutation that falls within a cancer gene or its regulatory regions, and alters the cancer gene’s function or activity such that it plays a role in the development and/or maintenance of the malignant phenotype. An individual tumor can harbor more than one driver mutation.

CN-LOH has been identified in many types of cancer. Copy neutral loss of heterozygosity (CN-LOH): Refers to duplication of the maternal or paternal chromosome (or chromosome region) with concurrent loss of the other allele. CN-LOH has been identified in many types of cancer.

Chromothripsis: Literally “chromosome shattering.” Refers to chromosomes that have fragmented into many pieces and have been rejoined in random order by DNA repair processes. Chromothripsis was first discovered in CLL. NGS technology has now identified chromothripsis in many types of cancer.

Chromosomal microarrays (CMAs): A technique used to analyze many genes at once. It involves placing thousands of known gene sequences in known locations on a “gene chip.” A sample containing DNA or RNA is applied to the gene chip, and complementary base pairing between the sample and the gene sequences on the chip (indicating the sequences are complementary) produces light that is measured.

Chromosome banding: Refers to light and dark regions along the length of a chromosome after staining with a dye.

Chromosomal microarrays (CMAs): A technique used to analyze many genes at once. It involves placing thousands of known gene sequences in known locations on a “gene chip.” A sample containing DNA or RNA is applied to the gene chip, and complementary base pairing between the sample and the gene sequences on the chip (indicating the sequences are complementary) produces light that is measured.

D

Driver mutation: A genomic mutation that falls within a cancer gene or its regulatory regions, and alters the cancer gene’s function or activity such that it plays a role in the development and/or maintenance of the malignant phenotype. An individual tumor can harbor more than one driver mutation.

Druggable: Amenable to treatment with drugs or susceptible to alteration or manipulation with drugs.

F

Flow cytometry: A technique in which a biomarker-specific antibody is applied to a liquid sample, which is then linked to an enzyme or fluorescent tag that can be detected by a flow cytometer.

Fluorescence in situ hybridization (FISH): A laboratory technique in which a fluorescently-labeled DNA probe is applied (or hybridized) to chromosomal DNA and visualized under fluorescence microscopy.

G

Gene fusions: Created by the fusion of 2 different genes from 2 different chromosomes.

Genetic mutation: A mutation in a specific or limited number of genes.

Germline mutation: A heritable DNA mutation present in egg and sperm cells. A germline mutation will be present in virtually every cell of the body.

I

Immunohistochemistry (IHC): A laboratory technique in which an biomarker-specific antibody is applied to a tissue or blood sample, which is then linked to an enzyme or fluorescent tag that permits visualization with fluorescence microscopy.

Insertion/deletions (indels): DNA mutations that involve small insertions or deletions of 1-1,000 bases.

Inversions: Created when a segment of a chromosome breaks off and reattaches in the opposite direction.

K

Karyotyping: A laboratory technique that produces an image of an individual’s chromosomes to look for abnormal numbers or structures of chromosomes.

Minimum (or measurable) residual disease (MRD): Describes a very small number of cancer cells that remain in the body during or after treatment. MRD can be found only by highly sensitive methods (like qPCR) capable of detecting 1 cancer cell among 1 million normal cells. (qPCR is becoming even more sensitive as the technology improves). MRD is also measured using flow cytometry.

Molecular profiling: The process of identifying specific biomarkers involved in the biology of cancer cells that can inform diagnosis and/or prognosis, or drive therapeutic decisions. Multiple technologies are used to assess DNA, RNA, and protein expression.

Molecular tumor board: Multidisciplinary tumor board that deals with modern molecular diagnostic tests in addition to classical radiological, clinical, and standard biological data. Members of an MTB may include medical and radiation oncologists, surgeons, pathologists, molecular biologists, geneticists,
Facts about Molecular Profiling

Next generation sequencing (NGS): Refers to a number of DNA sequencing technologies capable of rapidly analyzing multiple DNA sequences in parallel. Also called massively parallel sequencing (MPS).

Passenger mutations: A somatic mutation within either a coding or non-coding region of the genome that does not confer a selective advantage under a given set of selective pressures. Passenger mutations do not play causative roles or directly drive cancer initiation. Hundreds to thousands of passenger mutations are seen in most cancers.

PCR: Polymerase chain reaction (PCR) is an automated technique that produces large quantities of a precise targeted DNA segment from minute quantities of starting material. It involves denaturing, or separating two DNA strands in a sample, using DNA polymerase to synthesize two new DNA strands, and repeating the process as many as 30 or 40 times. In a PCR reaction, the target DNA segment can be amplified from just one or a few copies (not measurable) to billions (measurable).

Quantitative PCR (qPCR or real-time PCR): PCR technique that can determine the absolute or relative quantities of a known sequence in a starting sample, typically by quantitating fluorescence from a non-specific dye that binds to double-stranded DNA. Among other uses, qPCR is used to quantify minimal residual disease (MRD) in hematologic malignancies.

Single nucleotide polymorphism (SNP) array: A SNP array is similar to aCGH but uses DNA probes from regions in the genome that show differences between individuals at a single base pair (a “single nucleotide polymorphism”, or SNP). SNP arrays measure the absolute fluorescence probe intensities of the tumor sample DNA compared to normal control samples that have been analyzed separately and combined into a reference set (this is referred to as an in silico comparison).

Somatic mutation: A mutation that is acquired, not inherited. Somatic mutations can result randomly from mistakes during DNA replication or from exposure to environmental factors. Somatic mutations are present only in certain cells, not in every cell of the body.

Substitutions: DNA mutations in which one or more bases in the DNA sequence is replaced by a different base.

Targeted gene panel (mutation panel): Uses next-generation sequencing to test multiple genes simultaneously. Also called multi-gene test, multiple-gene test or gene panel.

Whole exome sequencing: To determine the sequence of only the protein-coding region of the genome. The human exome represents approximately 1% of the whole genome.

Whole genome sequencing: Reveals the identity of each of the more than 3 billion DNA bases in the entire genome using an NGS platform.

Variants of uncertain significance (VUS): A variation in genetic sequence for which the association with disease risk is unclear. Also called “unclassified variant.”
Facts about Molecular Profiling

References:

33. Trisenox [prescribing information]. North Wales, PA, Teva Pharmaceuticals; 2019.
Acknowledgements
LLS gratefully acknowledges

Anjali Advani, MD
Director, Inpatient Leukemia Unit
Taussig Cancer Institute
Cleveland, OH

Jeffery M. Klco, MD, PhD
Director, Division of Hematopathology and
Molecular Pathology
St. Jude Children’s Research Hospital
Memphis, TN

For their review of Facts About Molecular Profiling and
their important contributions to the material presented in
this publication.

We’re Here to Help
LLS is the world's largest voluntary health organization
dedicated to funding blood cancer research, education and
patient services.

The Leukemia & Lymphoma Society
3 International Drive, Suite 200
Rye Brook, NY 10573
Phone Number: (800) 955-4572
(M-F, 9 a.m. to 9 p.m. ET)
Website: www.lls.org
Email: infocenter@lls.org

LLS offers free information and services for patients and
families touched by blood cancers as well as for healthcare
professionals. The resources listed below are available to you
and your patients.

Consult with an Information Specialist. Information
Specialists are master’s level oncology social workers, nurses
and health educators. They offer up-to-date disease and
treatment information. Language services are available.
For more information, please
• Call: (800) 955-4572 (M-F, 9 a.m. to 9 p.m. ET)
• Email: infocenter@LLS.org

Clinical Trial Support Center. Patients and caregivers
can work one-on-one with a Clinical Trial Nurse Navigator
who will provide personalized clinical trial searches, help
overcome barriers to trial enrollment and personally assist
patients through the entire clinical trial journey.

If you have a patient who is looking for, or may be a
candidate for a clinical trial, encourage them to call LLS at
(800) 955-4572 or learn more at www.lls.org/CTSC

Web, Telephone, Podcast and In-person
Education Programs for:

• Healthcare Professionals:
 o www.lls.org/CE
 o www.lls.org/GENOMce
• Patients and caregivers:
 o www.lls.org/programs
 o www.lls.org/educationvideos

LLS Community. LLS Community is an online social
network and registry for patients, caregivers, and healthcare
professionals. It is a place to ask questions, get informed,
share your experience, and connect with others. To join
visit: www.lls.org/community

LLS Regions. LLS offers community support and services in
the United States and Canada including the Patti Robinson
Kaufmann First Connection Program (a peer-to-peer support
program), in-person support groups, and other helpful
resources. For more information about these programs or to
contact your region, please
• Call: (800) 955-4572
• Visit: www.lls.org/chapter-selection-page

Additional Resource
The National Cancer Institute (NCI)
www.cancer.gov
(800) 422-6237

The National Cancer Institute, part of the National
Institutes of Health, is a national resource center for
information and education about all forms of cancer.
The NCI also provides a clinical trial search feature, the
PDQ® Cancer Clinical Trials Registry, at www.cancer.gov/
clinicaltrials, where healthcare professionals and patients can
look for clinical trials.