Introduction

Surgery, chemotherapy, and radiation therapy have been the foundation of cancer treatment. Advances in the field of immunology (a branch of science that studies all aspects of the immune system) have led to a greater understanding of the ways in which the body's own defenses can be used to improve outcomes and lessen some of the toxic side effects of treatment for patients with blood cancers. Cancer researchers are now studying how harnessing the immune system can help destroy cancer cells.

The immune system is the body's defense against infection and cancer. It is made up of billions of cells that are divided into several different types. Lymphocytes, one type of white blood cell, comprise a major portion of the immune system. There are three types of lymphocytes: B lymphocytes (B cells), T lymphocytes (T cells) and natural killer (NK) cells. B cells make antibodies to fight infection; T cells and NK cells directly kill infected or cancerous cells and also talk to other cells of the immune system using chemicals known as “cytokines.”

B cell lymphomas and leukemias arise when normal B cells mutate (change) and become cancerous. These cancerous B cells then multiply and crowd out normal B cells.

Immunotherapy improves the body’s ability to detect and kill cancer cells. This approach to treatment is based on the concept that immune cells or antibodies can recognize and kill cancer cells. The immune cells or antibodies can be produced in the laboratory or in a drug manufacturing company under tightly controlled conditions regulated by the US Food and Drug Administration (FDA) and then given to patients to treat cancer. Several types of immunotherapy are either approved for use or are under study in clinical trials to determine their effectiveness in treating various types of cancer.

One type of immunotherapy involves engineering patients’ own T cells to recognize and attack cancer cells. The receptor that is made on the T cells is called a “chimeric antigen receptor (CAR).” This treatment is known as “CAR T-cell therapy.”

In CAR T-cell therapy, blood is taken from a patient and sent to a lab where the T cells are separated. These T cells are then modified to express a specific receptor—one that will allow the engineered T cell to find and kill the cancer cell. These engineered T cells are then multiplied in the lab and eventually given back to the patient through an intravenous infusion.

The most frequently targeted antigen (any substance that causes the immune system to produce antibodies against it) in CAR T-cell clinical trials for leukemia and lymphoma is called “cluster of differentiation (CD) 19.” CAR T-cell trials targeting other antigens (BCMA, CD22, CD123, ROR-1, NKG2D ligands) are also under way. CD19 is expressed on the surface of nearly all healthy and cancerous B cells, including lymphoma and leukemia B cells. Because CD19 is not expressed on any healthy cells, other than B cells, it is an ideal target for CAR T-cell immunotherapy.

Chimeric Antigen Receptor T-Cell Therapy: How it Works

T cells are collected from a patient. T cells are collected via apheresis, a process that withdraws blood from the body and removes one or more blood components (such as plasma, platelets or white blood cells). The remaining blood is then returned back into the body.

T cells are reengineered in a laboratory. The T cells are sent to a laboratory or a drug manufacturing facility where they are genetically engineered to produce chimeric antigen receptors (CARs) on their surface.
After this reengineering, the T cells are known as “chimeric antigen receptor (CAR) T cells.” CARs are proteins that allow the T cells to recognize an antigen on targeted tumor cells.

The reengineered CAR T cells are then multiplied. The number of the patient’s genetically modified T cells is “expanded” by growing cells in the laboratory until there are many millions of them. These CAR T cells are frozen and, when there are enough of them, they are sent to the hospital or center where the patient is being treated.

At the hospital or treatment center, the CAR T cells are then infused into the patient. Many patients are given a brief course of one or more chemotherapy agents before they receive the infusion of CAR T cells. CAR T cells that have been returned to the patient’s bloodstream multiply in number. These are the “attacker” cells that will recognize, and kill, cancerous cells that have the targeted antigen on their surface.

The CAR T cells help guard against recurrence. CAR T cells may remain in the body long after the infusion has been completed. They guard against cancer recurrence, so the therapy frequently results in long-term remissions.

At this time, CAR T-cell therapy is only available to patients who are participating in a clinical trial. Trial protocols vary. Depending on the clinical trial, care may be provided in either a hospital setting or a treatment center. Patients may have to stay at the treatment facility, or they may need to plan to stay close by before, during or following treatment. Some trial protocols require patients to confirm the availability of a caregiver before they can enroll in the trial.

Possible Side Effects of CAR T-Cell Therapy

Cytokine-Release Syndrome (CRS). A serious toxicity associated with CAR T-cell therapy is cytokine-release syndrome (CRS). CRS is the result of T-cell activation, so its presence actually indicates a positive response to therapy. Reinfused CAR T cells encountering their targets are rapidly activated, and cytokines (chemical messengers that help the T cells perform their duties) are released. The symptoms that some people experience with viral infections, such as the flu, are examples of a mild form of cytokine release. With CAR T-cell therapy, large amounts of cytokines are produced by the activated immune system. CRS in this setting may cause high fevers, low blood pressure or poor lung oxygenation (requiring administration of supplemental oxygen as a temporary measure). Some patients experience delirium, confusion and seizure while undergoing treatment. The onset of these symptoms is typically within the first week of treatment. The causes of CRS symptoms are not fully understood. One potential explanation is CAR T-cells secrete cytokines. These symptoms, however, are reversible.

In one small study of 40 patients, a little over half of them experienced CRS. CRS was grade 1 (mild) in 10 percent, grade 2 (moderate) in 17 percent, grade 3 (more severe) in 15 percent and grade 4 (life threatening) in 15 percent. Grade 1 CRS was mild and treated, for example, with medications that reduce fevers; grade 4 was life threatening at times, requiring assisted ventilation.

Patients with the most extensive disease prior to receiving CAR T cells are more likely to experience the more severe cases of CRS. Researchers discovered that patients with the most severe reactions expressed high levels of interleukin (IL)-6, a cytokine that is secreted by T cells in response to inflammation. Doctors have developed treatment plans to manage these more severe cases. Two drugs that are approved to treat inflammatory conditions have been used in its management: etanercept (Enbrel®) that blocks tumor necrosis factor (TNF) and tocilizumab (Actemra*) that blocks IL-6 activity. Immune system suppressing medications such as corticosteroids are sometimes used. Other methods of decreasing the frequency of severe CRS are being explored including multiple-dose CAR T-cell therapy and decreasing the burden of disease prior to CAR T-cell infusion.

B-Cell Aplasia. CAR T-cell therapy targeting antigens found on the surface of B cells not only destroys cancerous B cells but also normal B cells. Therefore, B cell aplasia (low numbers of B cells or absent B cells) is an expected side effect. This absence of B cells results in less ability to make the antibodies that protect against infection. Intravenous immunoglobulin replacement is used to prevent infection. It is not known how long the decreased number of B cells persists however, no long-term side effects have been noted.

Tumor Lysis Syndrome (TLS). Another known side effect of CAR T-cell therapy is tumor lysis syndrome, a group of metabolic complications that can occur due to the breakdown of dying cells—usually at the onset of toxic cancer treatments. However, TLS can occur one month or more after CAR T-cell therapy. TLS can be a life-threatening complication of any treatment that causes breakdown of cancer cells, including CAR T cells. The complication has been managed by standard supportive therapy.

Results, Limitations, and the Future of CAR T-Cell Therapy

Early results from CAR T-cell trials have generated impressive results and considerable promise in patients with blood cancers. CART T-cell therapy may represent options for acute lymphoblastic leukemia (ALL) patients who have relapsed after intensive chemotherapy or a stem cell transplant. In some studies, up to 90 percent of children and adults with ALL who had either relapsed multiple times, or failed to respond to standard therapies, achieved remission after receiving CAR T-cell therapy. Studies of CART T-cell therapy
in other blood cancers, including chronic lymphocytic leukemia (CLL), some types of non-Hodgkin lymphoma (NHL) including diffuse large B cell lymphoma (DLBCL) and follicular lymphoma, as well as multiple myeloma, are also very promising.

While data is fast emerging as to the early responses to CAR T-cell therapy, most of the patients participating in these clinical trials have only been followed for a relatively short period of time. Following these trial participants over the long term will provide information as to the length of their responses. It is important for more pediatric and adult patients to be enrolled in clinical trials. Larger study samples, looked at over more extended periods, will help researchers further understand the impact of this type of therapy, ways to reduce its toxicity and also improve toxicity management.

Researchers are in the relatively early stages of studying this treatment modality. Studies are under way to look at ways to improve the production of CAR T-cells; to identify additional targets and receptors and to decrease the side effects of CAR T-cell therapy.

Enrolling in a Trial

Talk with your doctor about whether participation in a CAR T-cell therapy clinical trial is an option for you. Obtaining another opinion from a hematologist-oncologist (a blood cancer specialist), may be helpful in finding additional clinical-trial information as well. When you discuss CAR T-cell therapy as a potential treatment option for you, it may be helpful to have

- A list of questions to ask concerning risks versus benefits of such a trial (visit www.LLS.org/whatatoask for lists of suggested questions)
- A family member, friend, or another advocate with you for support and to take notes.

In addition to speaking with your doctor, LLS Information Specialists, available at (800) 955-4572, offer guidance on how patients can work with their doctors to determine if a specific clinical trial is an appropriate treatment option. Information Specialists can search for clinical trials on behalf of patients, family members and healthcare professionals.

Acknowledgement

LLS gratefully acknowledges

Saar Gill, MD, PhD
Assistant Professor of Medicine
The Hospital of the University of Pennsylvania
Philadelphia, PA

for his review of *Chimeric Antigen Receptor (CAR) T-Cell Therapy Facts* and his important contributions to the material presented in this publication.

We’re Here to Help

LLS is the world’s largest voluntary health organization dedicated to funding blood cancer research, education and patient services. LLS has chapters throughout the country and in Canada. To find the chapter nearest to you, visit our Web site at www.LLS.org/chapterfind or contact

The Leukemia & Lymphoma Society
3 International Drive, Suite 200
Rye Brook, NY 10573
Contact an Information Specialist at (800) 955-4572
Email: infocenter@LLS.org.

LLS offers free information and services for patients and families touched by blood cancers. The following lists various resources available to you. Use this information to learn more, to ask questions, and to make the most of your healthcare team members’ knowledge and skills.

Consult with an Information Specialist. Information Specialists are master’s level oncology social workers, nurses and health educators. They offer up-to-date disease and treatment information. Language services are available. For more information, please

- Call: (800) 955-4572 (M-F, 9 a.m. to 9 p.m. EST)
- Email: infocenter@LLS.org
- Live chat: www.LLS.org
- Visit: www.LLS.org/informationspecialists.

Free Information Booklets. LLS offers free education and support publications that can either be read online or downloaded. Free print versions can be ordered. For more information, please visit www.LLS.org/booklets.

Información en Español (LLS information in Spanish). For more information, please visit www.LLS.org/espanol.

Telephone/Web Education Programs. LLS offers free telephone/Web education programs for patients, caregivers and healthcare professionals. For more information, please visit www.LLS.org/programs.

LLS Community. LLS Community is an online social network and registry for patients, caregivers, and supporters of those with blood cancer. It is a place to ask questions, get informed, share your experience, and connect with others. To join visit CommunityView.LLS.org.

Online Blood Cancer Discussion Boards and Chats. Online discussion boards and moderated online chats can provide support and help cancer patients to reach out to others in similar circumstances, and share information. For more information, please visit www.LLS.org/chat or www.LLS.org/discussionboard.
Chimeric Antigen Receptor (CAR) T-Cell Therapy Facts

LLS Chapters. LLS offers community support and services in the United States and Canada including the Patti Robinson Kaufmann First Connection Program (a peer-to-peer support program), in-person support groups, and other great resources.

- Call: (800) 955-4572
- Visit: www.LLS.org/chapterfind.

Clinical Trials (Research Studies). New treatments for patients are ongoing. Patients can learn about clinical trials and how to access them. For more information, please

- Call: (800) 955-4572 to speak with our LLS Information Specialists who can help conduct clinical-trial searches
- Visit: www.LLS.org/clinicaltrials.

Advocacy. The LLS Office of Public Policy (OPP) engages volunteers in advocating for policies and laws that encourage the development of new treatments and improve access to quality medical care. For more information, please

- Call: (800) 955-4572
- Visit: www.LLS.org/advocacy.

Another Resource

The National Cancer Institute (NCI)

www.cancer.gov
(800) 422-6237

The National Cancer Institute, part of the National Institutes of Health, is a national resource center for information and education about all forms of cancer, including CAR T-cell therapy. The NCI also provides a clinical-trial search feature, the PDQ® Cancer Clinical Trials Registry, at www.cancer.gov/clinicaltrials, where patients can look for clinical trials.

References

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is distributed as a public service by The Leukemia & Lymphoma Society (LLS), with the understanding that LLS is not engaged in rendering medical or other professional services.