Acute Lymphoblastic Leukemia In Adults Overview and Updates

September 17, 2022

Marlise R. Luskin, MD MSCE Adult Leukemia Program Dana-Farber Cancer Institute and Brigham and Women's Hospital Assistant Professor, Harvard Medical School

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Marlise R. Luskin, MD MSCE

Physician, Division of Leukemia, Dana-Farber Cancer Institute Assistant Professor, Harvard Medical School Associate Program Director, DF/MGB Hematology Oncology Fellowship Director, Foley Family Fellowship in Leukemia

Education and Training:

Medical School: University of Pennsylvania, Philadelphia, PA

Residency, Internal Medicine: Brigham and Women's Hospital, Boston, MA

Fellowship, Hematology/Oncology: University of Pennsylvania, Philadelphia, PA

Clinical Focus: ALL, AML, CML, BPDCN, MDS, and MPNs **Research Focus:** ALL, AYAs, novel therapeutics for acute leukemia.

Disclosures

- Pfizer, Advisory Board
- Abbvie, Research Funding
- Novartis, Research Funding

Acute Lymphoblastic Leukemia (ALL)

- Aggressive hematologic neoplasm of B- or T-lymphoblasts
 - Acute lymphoblastic leukemia (ALL)
 - Lymphoblastic lymphoma (LBL)
- Clinical Presentation

- Cytopenias (bone marrow failure), adenopathy (enlarged lymph nodes), mediastinal mass (T-cell), hepatosplenomegaly, central nervous system.
- Constitutional symptoms (fatigue, fevers, sweats, weight loss, bone pain).
- Diagnosis: Morphology (blasts) and immunophenotype (flow cytometry/IHC) to determine lymphoid (B or T) and maturity stage.
 - B-lymphoblasts: CD10, CD19, CD20 (some), and CD22; Ig negative
 - T-lymphoblasts: cCD3 and other T cell antigens.

ALL – Epidemiology and Demographics

At a Glance

- Most common leukemia in children.
- Adults: ~50% of diagnoses, but majority of relapses and death.
- Risk factors: Down syndrome, prior chemo/radiation (myeloma).
- In adults, ~1/3 are Philadelphia-chromosome positive

0.3%

ALL: A Pediatric Oncology Success Story

• **1948:** Sidney Farber described 5 children who responded (temporarily) to the folic acid antagonist **aminopterin**.

FIGURE 4. Photomicrographs of the Sternal Bone Marrow in Case 3, Showing Giemsa-Stained Section on January 29, (A) and April 3 (B), 1948 (x1000).

Note that the microscopical field is composed mainly of blast forms characteristic of leukemia (cell type undetermined) in the early section (A) and that a marked shift to mature cell forms, particularly of the polymorphonuclear series, with no leukemic cells, had occurred on the later examination (B).

• 2022: 73 years later, most children cured.

CCG and COG trials, 1968-2009

Farber et al. *N Eng J Med* 1948;238:787-93; Pui et al. *J Clin Oncol* 2015;33:2938-48; Hunger and Mulligan *N Eng J Med* 2015;373:1541-52

ALL in Adults: More Work to be Done

https://seer.cancer.gov/statfacts/html/alyl.html; Rowe et al. *Blood* 2005;106:3760-67; Gokbuget N *Hematology Am Soc Hematol Educ Program* 2016;573-79; Luskin MR *Hematology Am Soc Hematol Educ Program* 2021; 1:7-14; Sasaki et al. *Am J Hematol* 2021;96:650-58

ALL – Framework for Initial Approach to Adult ALL

Initial therapeutic decisions guided by:

1) Philadelphia-chromosome status

2) Age/fitness for chemotherapy

- AYA: Pediatric-inspired
- Adult: Standard intensity
- Older/With Medical Problems: Less intense

ALL – Approach to Initial Treatment

Induction Goal → Achieve Remission

Reduce morphologically apparent leukemia to undetectable levels
→ complete remission (CR).

- Consolidation/Maintenance Goal → Prolong Remission/Cure
 - Reduce minimal residual disease present at CR (*measured or presumed*) to a level low enough to achieve prolonged disease-free survival, sometimes cure.

Philadelphia Chromosome **Negative** Acute Lymphoblastic Leukemia

ALL – Approach to Ph-Negative ALL Therapy (B and T)

	Age < ~40 (AYA)	Age 40–70 (Fit) (Adult)	Age >70/Unfit	
Goal	Cure	Cure	Cure? Control!	
Induction	AYA induction	Adult induction	Less intense induction	
Consolidation	<u>Low-risk</u> : Chemotherapy <u>High-risk</u> :	<u>Low-risk</u> : Chemotherapy <u>High-risk</u> :	Less intense consolidation/ maintenance	
	Transplant	Transplant		

Philadelphia-chromosome-**negative** ALL

- Multiple cycles of combination chemotherapy.
 - Complex: numerous drugs in different doses, combinations, and schedules.
 - Prolonged chemotherapy (2-3 years from CR), unless transplant in first CR.
 - Phases: 1) induction, 2) consolidation with CNS phase, 3) maintenance.
- "Core" drugs: vincristine, steroids, anthracycline
 - YOUNG: "Pediatric-inspired" or "AYA" (adolescent young adult) regimens are more intensive including <u>asparaginase</u>, <u>steroids</u>, <u>vincristine</u>, and <u>escalated CNS</u> <u>prophylaxis</u>, lead to improved outcomes.
 - **OLDER**: Dose-reduced chemo, *investigational: novel agents*
- CNS prophylaxis is mandatory
 - IT chemotherapy, high dose cytarabine/methotrexate, CNS radiation

Approach to Ph-Neg ALL in Younger Adults

- Patients aged ≤ 40 years (adolescent and young adults, "AYAs") have improved outcomes when treated on a pediatric-inspired regimen.
- Identified retrospectively → safety and efficacy demonstrated prospectively with favorable outcomes compared to historical controls.

AYAs aged **16–20 years** treated on **pediatric** (CCG) or adult (CALGB) trials 1988–2001

Identical CR rates (90%)

7-year survival: CCG: 67% CALGB: 46%

CLINICAL TRIALS AND OBSERVATIONS

A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403

Wendy Stock,³ Selina M. Luger,² Anjali S. Advani,³ Jun Yin,⁴ Richard C. Harvey,⁵ Charles G. Mullighan,⁶ Cheryl L. Willman,⁵ Noreen Fulton,¹ Kristina M. Laumann,⁴ Greg Malnassy,¹ Elisabeth Paietta,⁷ Edy Parker,⁸ Susan Geyer,⁹ Krzysztof Mrózek,¹⁰ Clara D. Bloomfield,¹⁰ Ben Sanford,⁸ Guido Marcucci,¹¹ Michaela Liedtke,¹² David F. Claxton,¹³ Matthew C. Foster,¹⁴ Jeffrey A. Bogart,¹⁵ John C. Grecula,¹⁰ Frederick R. Appelbaum,¹⁶ Hany Erba,¹⁷ Mark R. Litzow,¹⁸ Martin S. Tallman,¹⁹ Richard M. Stone,²⁰ and Richard A. Larson¹

Stock et al. Blood. 2008;112:1646-54; Stock et al. Blood 2019;133:1548-59

Asparaginase (ASNase): Mechanism of Action

- Asparagine (Asn) is an amino acid that can be synthesized from aspartic acid by most cells using asparagine synthetase (ASNS).
- ALL cells lack ASNS, thus depend on import of Asn from plasma, making them sensitive to depletion of plasma Asn.
- ASNase breaks down Asn to aspartic acid and ammonia.
- ASNase depletes plasma Asn, thereby killing ALL cells but not normal cells that can make their own Asn.

Anti-ALL Activity of ASNase

ASNase is a key component of effective contemporary pediatric ALL regimens

Avramis et al. Int J Nanomedicine. 2006;1:241.

Slide credit: clinicaloptions.com

AYA Regimens – Asparaginase a Particular Challenge

- Asparaginase-related
 - Thrombosis/hemorrhage
 - Liver toxicity
 - Pancreatitis
 - Hypertriglyceridemia
 - Hyperglycemia
 - Hypersensitivity
- Steroid + asparaginase related osteonecrosis

Stock et al. *Leuk Lymphoma* 2011;52:2237-53; Grace et al. *J Thrombosis Thrombolysis* 2018;45:306-14; Aldoss and Douer. *Blood.* 2020;135:987-95; Valtis...Luskin et al. *Blood Adv* 2022;6:72-81

Why Bother? More Asparaginase \rightarrow Better Outcomes

Silverman et al. Blood 2001;97:1211-18; Gupta et al. J Clin Oncol 2020;38:1897-1905; Gottaschalk et al. Blood 2021;137:2373-82

Dur 1 2 2 CTX Begin Course III within 7 days at	a 7.4) cover with ANC \geq 750/ μ L and platelets \geq 75,000/ μ L. chairs. Therapy should be interrupted for patients who e same point when the signs of infection have abated.	I DNR VCR Pred Peg-Asp IT-MTX IT-AraC	C Cyclo VCR Dex Peg-Asp Ara-C 6MP IT-MTX	IM MTX VCR Peg-ASP IT-MTX	DI M DOX DEX Cyclo VCR Dex 6MP Peg-Asp MTX Ara-C IT-MTX 6-TG IT-MTX
IT-Ara-C IT It<	COURSE IV: DELAYED INTENSITIFICATION (see Section 7.6)A bone marrow aspirate and biopsy must be obtained prior to initiation of Course IVBegin Course IV within 7 days after peripheral blood counts recover with ANC \geq 75If counts not recovered within 4 weeks, the \geq 75,000/µL prior to starting Delayed Interinterrupted for patients with severe infectionOtherwise, therapy should not be interrupt \bigvee CR \bigvee Dex Days 1-7 \bigvee DOX \bigvee R \bigvee Dex Days 1-7 \bigvee DoX \bigvee R \bigvee Dex Days 1-7 \bigvee DoX \bigvee R \bigvee Dex Days 1-7 \bigvee Dex Days 1-84 \bigvee Dex Days 1-7 \bigvee Dex Days 1-84 \bigvee Dex Days 1-84 \bigvee Dex Days 1-7 \bigvee Dex Days 1-7 \bigvee Dex Days 1-7 \bigvee Dex Days 1-7 \bigvee Dex Days 1-84 \bigvee Dex Days 1-7 \bigvee Dex Days 1-84 \bigvee Dex Days 1-7 \bigvee Dex Days 1	0/µL and platelets ≥ 7 nemu 2 Vg ⊗ y y 5 x 7 5 x x x x x x y x y y y y y y y y y y y	otal duration of therapy patients (see Section 7. PO MTX 15 16 16 17 PO MTX 35 36 36 37 38 39 VCR [Dex Days 57-61	$\begin{array}{c c} & & & \\ \hline & & & \\ \hline & & & \\ \hline \\ 19 & 20 & 21 \\ \hline \\ \hline \\ 19 & 20 & 21 \\ \hline \\ 10 & 21 & 21 \\$	

Philadelphia Chromosome **Negative** Acute Lymphoblastic Leukemia

<u>New</u>: Pediatric Regimens for Adolescent and Young Adults (AYAs)

Approach to Ph-Neg ALL in Adults: Chemotherapy

- Regimens based on multiple cycles of intensive multi-agent chemotherapy.
 - Many "standard" regimens.
- Common in the US: ECOG 2993¹, Hyper-CVAD², CALGB 9111("Larson").³
- Similar Response Rates Across Trials:
 - CR: ~90%; OS/Cure: 40%
- The recent **ECOG 1910 trial** randomized to blinatumomab consolidation; results awaited.

ECOG 2993

¹Rowe et al. *Blood* 2005;106:3760-67; ²Kantarjian et al. *J Clin Oncol* 2000;18:547-61; ²Kantarjian et al. *Cancer* 2004;101:2788-801; ³Larson et al. *Blood* 1998;92:1556-64; Wetzler et al. *Blood* 2007;109:4164-67

Older Adults: Poor Outcomes With Conventional Chemotherapy

	Age	CR (%)	Early Death (%)	OS (%)			
Adult trials, older adult cohorts (dose modifications employed)							
CALGB 9111	≥60	77	17	17 (3 yr)			
ECOG 2993 / UKALL XII	55-65	73	18	21 (5 <u>yr</u>)			
Hyper CVAD	≥60	84	10	20 (5 <u>vr</u>)			
Older adult trials	der adult trials						
Dana-Farber/Harvard	>50	67	13	52 (2 <u>vr</u>)			
GMALL	≥55	76	14	23 (5 <u>yr</u>)			
PETHEMA ALLOLD07	>55	74	13	12.4 <u>mo</u> med			

Numbers reflect <u>treated</u> patients, *eligible for and interested in clinical trial*.

Resistant Disease

- Lower CR rate/refractory
- Relapse

Toxicity

- High early death (10-20%)
- Death in CR

<u>Many not even treated</u>: US Medicare analysis (2019) – only $51.1\% \ge 66$ years treated within 90 days. Most (78.3%) untreated were 75+ years.

Larson et al. *Blood* 1998;92:1556-64; Sive et al. *Br J Haematol* 2012;157:463-71; O'Brien et al. *Cancer* 2008;113:2097-101; Fathi et al. *Cancer* 2016;122:2379-88; Gokbuget et al. *Blood* 2012;120:Abstract 1493; Ribera et al. *Leuk Res* 2016;41:12-20; Kim et al. *Leuk Lymphoma* 2019;60:1462-68

Extremely Poor Outcomes in Older Adults with ALL. Little Improvement for 3 decades.

Geyer et al. Blood 2017;129:1878-81; Dinmohamed et al. Leukemia 2016;30:310-17; Toft et al. Br J Haematol 2012;157:97-104

ALL in Older Adults: Improving Outcomes Conventional Chemotherapy → Novel Agents

Disease (Chemotherapy Resistance) ↓CR rate ↑Relapse Need: More effective therapies

Patient (Chemotherapy Tolerability) ↑Early mortality, ↑Death in CR Need: Less toxic therapies.

Social, Logistical (Access)

↑No or minimal treatment Need: Therapies that are <u>not too complicated</u>.

Philadelphia-chromosome-negative (Ph-) ALL Incorporating Novel Agents

- Until recently, only option available for Ph- ALL was conventional chemotherapy.
- Blinatumomab (2014) and inotuzumab ozogamicin (2017) approved for relapsed and refractory B-ALL.
- Other novel agents being investigated for ALL, including venetoclax.

Goals	Approach
Better efficacy	Add novel agents
Less toxicity	Reduce/omit conventional chemotherapy

Inotuzumab + mini-hyper-CVD

Phase 2, single center, untreated patients \geq 60 years

Outcomes updated ASH 2021 (n=79, 38% ≥ 70 years)

- <u>Early mortality</u>: 0%
- <u>MRD-negative CR</u>: 94%; <u>3-yr OS</u>: 55%
- <u>Death in CR</u>: 34% (29/79); most ≥ 70 yrs (sepsis, VOD, MDS/AML).

Modifications:

- Inotuzumab dose reduced/fractionated
- Chemotherapy cycles decreased, omitted \geq 70 years
- Blinatumomab added

Grade 3+ Adverse Events

Philadelphia-chromosome-negative (Ph-) ALL Incorporating Novel Agents

Kantarjian et al. Lancet Oncol 2018;19:240-9; Chevallier et al. Blood 2021;138:Abstract 511; Stelljes et al. Blood 2021;138:Abstract 2300; Advani et al. J Clin Advani et al. J Clin Oncol 2022;40:1574-82; Goekbuget et al. Blood 2021;139: Abstract 3399; Jain et al. Blood 2019;134:Abstract 3867

Philadelphia-chromosome-negative (Ph-) ALL Incorporating Novel Agents **SUMMARY**

- High CR rates (80-90%).
- Most MRD negative (80-90%).
- Low induction mortality <5%.
- Late toxicity still a problem.
- Long-term outcomes awaited!
- NCTN plans randomized comparison to establish new standard.

Alliance 042001 NCT05303792

Kantarjian et al. Lancet Oncol 2018;19:240-9; Chevallier et al. Blood 2021;138:Abstract 511; Stelljes et al. Blood 2021;138:Abstract 2300; Advani et al. J Clin Oncol 2022;40:1574-82; Goekbuget et al. Blood 2021; 139: Abstract 3399; Jain et al. Blood 2019;134:Abstract 3867

ALL in Older Adults: Starting to Improve?

- Little progress over time: US SEER (n=1675), >60 yrs, 3-yr OS 10% → 16% (1980-2011)
- Now, glimmers of hope?
- More patients being treated \rightarrow

- Updated SEER analysis shows improvement in the 2010s
 - Age 60-69 (n=723): **1990s** Median OS 6 mos \rightarrow **2010s** 18 mos (5-yr OS: 14 \rightarrow 29%)
 - Age 70+ (n=890): **1990s** Median OS **1** mo \rightarrow **2010s 4** mos (5-yr OS: 4 \rightarrow 13%)

Geyer et al. *Blood* 2017;129:1878-8 1; Sasaki et al. *Am J Hematol* 2021;96:650-58; Joshi et al. *Clin Lymphoma Myeloma Leuk* 2022; S2152-2650(22)00188-4.

Philadelphia Chromosome **Negative** Acute Lymphoblastic Leukemia

New:

Novel Agent Being Studied In Initial Therapy To Improve Outcomes, Especially Important for Older Adults

Philadelphia Chromosome **Positive** Acute Lymphoblastic Leukemia

Ph+ = t(9;22) = *BCR-ABL* fusion. ABL kinase is a major driver of disease.

Philadelphia Chromosome Positive (Ph+) ALL

- Present in $\sim 1/3\%$ of ALL cases. ٠
- Prevalence increases with age (>50%) ulletover age 50 years).
- Historically adverse prognosis. •

Overall Survival 040 0.60

ETV6/R

ETV6/RUNX1 P<0.0001

60

Chiaretti et al. Haematologica 2013;98:1702-10; Burmeister et al. Blood 2008;112:918-9; Ribera et al. Br J Haematol 2012;159:485-88; Moorman et al. Blood 2007;109:3189-97

TKIs (Imatinib) Improve Outcome in Chemotherapy Treated Patients

- Imatinib improves outcome when combined with chemotherapy.
- Higher CR rates, higher OS, more patients \rightarrow BMT.
- Better outcomes if introduced earlier in treatment.

Key Points

 Imatinib improves outcomes for adults with Ph+ ALL at least in part by facilitating allogeneic stem cell transplant.

Tyrosine Kinase Inhibitors \rightarrow CR with Minimal Tox

- GRAAPH-2005 → IM + VCR/Dex: ↑CR rate and ↓mortality compared to IM + hyperCVAD.
- **GIMEMA** → Successful "chemotherapy-free" induction (imatinib LAL 0201-B; dasatinib LAL 1205, ponatinib LAL 1811).
 - High CR rates (>90%).
 - 2G/3G TKIs Deeper and more durable.
 - Minimal toxicity.

TKIs allow reduction or omission of conventional chemotherapy during induction in Ph+ ALL.

Chalandon et al. *Blood* 2015;125:3711-9; Vignetti et al. *Blood* 2007;109:3676-8; Foa et al. *Blood* 2011;118:6521-8; Martinelli et al. *Blood Adv* 2022;6:17-42-53; Wieduwilt et al. *Blood Adv* 2021;23:4691-700; Sugiura et al. *Blood Adv* 2022;6:624-36; Rousselot et al. *Blood* 2016;128:774-82

Ph+ ALL: Which TKI is Best?

- In combination with chemotherapy, retrospective comparison (hyper-CVAD context) suggest better outcomes with 2G and 3G TKIs (deeper remissions, improved survival).
- Ponatinib is potent and active again T315I, a common mechanism of resistance to earlier generation TKIs, but associated with cardiovascular toxicity.

MD Anderson Propensity Score Retrospective Analysis

Sasaki et al. Cancer 2016;122:3650-6; Jabbour et al. Clin Lymphoma Myeloma Leukemia 2018;18:257-65

Ph+ ALL: Best Post-Remission Approach Not Defined, Approach Individualized

- TKI is not curative.
- Options (and/or):
 - Allogeneic hematopoietic stem cell transplant (HSCT)
 - Chemotherapy: Age-adjusted
 - ?Novel agents: Blinatumomab
- One size fits all vs age/co-morbidity tailored and risk adapted approach.
 - Here is where roads diverge!

Martinelli et al. *Blood Adv* 2022;6:17-42-5; Luskin et al. *Blood* 2021; Rousselot et al. *Blood* 2016;128:774-82; Foa et al. *N Eng J Med* 2020;383:1613-23; Wieduwilt et al. *Blood Adv* 2021;23:4691-700; Bachanova et al. *Leukemia* 2014;28:658-65

Chalandon et al. *Blood* 2015;125:3711-19; Ravandi et al. *Blood Advances* 2016;1:250-59

US Intergroup dasatinib + hyperCVAD

Ph+ ALL: Do All Patients Need HSCT for Cure?

- Some patients may not benefit. But which ones?
- Good outcomes without HSCT. \bullet
 - Some patients treated with TKI + chemo rapidly achieve deep responses \rightarrow favorable long-term outcomes without HSCT.
- **Risk of HSCT.** •
 - Increased patient age, comorbidities increase toxicity.
 - Transplant advances may reduce toxicity.

48

96

Time (months)

144

20

0

0

63%

39%

26%

192

Chalandon et al. *Blood* 2015;125:3711-19; Kim et al. *Blood* 2015;126:746-756; Ravandi et al. *Blood Advances* 2016;1:250-9; Ravandi et al. Blood 2013;122:1214-21; Short et al. Blood 2016;128:504-7

HSCT May Be Unnecessary after Optimal Response to Intensive Chemo (hyper-CVAD)

GRAAPH-2014: TKIs are Great, but Not Enough

- New Ph+ ALL, ages 18-60
- **Design:** Random evaluation of no HiDAC consolidation.
- Primary endpoint: MMolR BCR-ABL1 ≤0.1% after 4th treatment cycle (MRD4).
- **TKI:** Imatinib \rightarrow nilotinib.
- **Chemo:** 4 cycles prior to BMT.
- **BMT:** Allo HSCT in CR1 if matched donor (MSD or MUD).
- Maintenance: 2-yr IM post BMT.

ASH 2021 Abstract 614: Rousselot et al.

GRAAPH-2014: TKIs are Great, but Not Enough

- Randomization stopped early due to excess relapse in Arm B (no HiDAC).
- Transplanted patients in Arm B (no HiDAC) had dramatically better outcomes.
- Outcomes of patients in Arm A (HiDAC) were similar regardless of alloSCT status.

GRAAPH-2014 study – Omission of HiDAC consolidation in younger patients (18-60 years) → frequent relapses in the absence of HSCT (Take Home: Need intensification with chemotherapy or HSCT, can't omit both!)

Abstract 614: Rousselot et al.

GIMEMA D-ALBA Study

N=63, median age 54 (range 24-82) yrs

Note:

Follow-up still short. Approximately half \rightarrow HSCT.

- Day 85 29% Molecular Response
- Blina C2 (n=55) 60% Molecular Response
- Blina C4 81% Molecular Response

- 36-month DFS and OS rates 71% and 80%, respectively (median follow-up 28.8 months).
- Worse outcomes in *IKZF1* deletion.

Foa et al. N Eng J Med 2020;383:1613-23

Ponatinib + Blinatumomab in Ph+ ALL: Regimen

Ponatinib + Blinatumomab in Ph+ ALL: MRD Response Rates

End of Cycle 1

Overall

Ponatinib + Blinatumomab in Ph+ ALL: Survival Outcomes for Frontline Cohort

Median follow-up: 11 months (range, 1-41)

Event-Free Survival

Overall Survival

- to TKI+hyper-CVD orTKI+ blinatumomab.
- **Transplant:** Allowed, not proscribed.

ullet

•

- Will we get answers about best consolidation approach?
- Enrolling to randomized trials is important.

Ph+: ALL Conclusions and Questions

- Known: TKIs improve outcomes and are an essential component of therapy for Ph+ B-ALL.
- Question: What is the best TKI?
 - -<u>In US, most use 2G</u> dasatinib, but there is interest in 3G TKI ponatinib.
 - Concerns about toxicity of 3G TKI.
 - Mitigated by optimized dosing (de-escalate after response)?
 - Can patients be appropriately selected based on disease risk and comorbidities?
 - -<u>Investigational</u>: combination of catalytic domain and allosteric inhibitor?

– Dasatinib plus ABL001 – DFCI protocol 18-170

Ph+: What We Know and (Mostly) What Don't Know

INDUCTION: Is intensive chemotherapy needed? In general no, associated with higher toxicity/early mortality.

- Do some patients benefit from early chemotherapeutic intensification?
- Should less toxic, novel agents (i.e. blina) be introduced early (before CR)?

CONSOLIDATION (FIT): TKI is not enough. Best addition? HSCT or intensive chemo, ?blina

- HSCT remains an accepted standard, but patients who respond optimally to intensive chemotherapy may not need.
- Long-term outcomes in patients treated with 2G/3G TKI plus novel agents (blina) unknown. Appear very effective, but curative?
- For transplant INeligible, how to best consolidate?

Philadelphia Chromosome **Negative** Acute Lymphoblastic Leukemia

<u>New</u>:

Many options – Potent TKIs, novel agents (blinatumomab), chemotherapy, BMT. Adverse prognosis being reversed?

Relapsed ALL

Relapsed ALL: Historically, Dismal Prognosis

609 adults with relapsed ALL treated on ECOG 2993

"Favorable" findings

- Younger (<20 years)
- Long first remission

HSCT needed

Fielding et al. *Blood* 2007;109:944-50; Gokbuget et al. *Blood* 2012;120:2032-41; Tavernier et al. *Leukemia* 2007;21:1907-14.

ALL – Antibodies for B-ALL in Relapse

- Blinatumomab (TOWER) Bispecific monoclonal antibody targeting CD19 and CD3. Enables CD3+ T-cells to recognize and destroy CD19+ cells (malignant and normal).
 - <u>Toxicity</u>: CRS, neurotoxicity
 - <u>Strengths</u>: Lower disease burden, MRD +
 - Logistics: Continuous infusion.
- Inotuzumab ozogamicin (INO-VATE) Humanized IgG4 anti-CD22 antibody covalently linked to a cytotoxic agent (calicheamicin) → double-strand DNA breaks and apoptosis.
 - <u>Toxicity</u>: Cytopenias, liver toxicity (VOD)
 - <u>Strengths</u>: Effective at high and low disease burden, extramedullary disease
 - Logistics: Weekly Infusion

29.4%

SOC

30

INO

Kantarjian et al. N Engl J Med 2017;376:836-47; Kantarjian et al. N Engl J Med 2016;375:740-53; Maude et al. N Eng J Med 2018;378:439-48

Key Anti-CD19 CAR T-Cell Therapy Trials: B-ALL

	ELIANA ^[1] (N = 75)	MSKCC ^[2] (N = 53)	ZUMA-3 ^[3] (N = 45)
CAR T-cell agent	Tisagenleucel	JCAR015	KTE-X19
Study phase	II	l	I/II
Study population	Pediatric/young adults with R/R B-ALL	Adults with relapsed B-ALL	Adults with R/R B-ALL
CR, %	MRD negative: 81	Overall: 83	Overall: 68 RP2D: 84
Median OS, mos	19.1	12.9	
Median EFS, mos	NR	6.1	
Median DoR, mos	NR		RP2D: 12.9
Median follow-up, mos	13.1	29	16
	FDA approved	Halted	FDA approved

1. Maude. NEJM. 2018;378:439. 2. Park. NEJM. 2018;378:449. 3. Shah. ASCO 2019. Abstr 7006.

Current Treatment Algorithm for R/R B-ALL

Relapsed T-ALL: Nelarabine

- Nelarabine is the prodrug of AraG; the active metabolite AraGTP accumulates in T lymphoblasts to a greater extent than in B cells or mature T cells due to decreased AraGTP degradation
- Associated with peripheral and CNS toxicities, myelosuppression dose dependent
- In adult R/R setting, 31% CR rate, 1-year OS 28% (DeAngelo Blood 2007); similar in children (Berg J Clin Oncol 2005)
- Approved for relapsed/refractory T-cell ALL

DeAngelo et al. Blood 2007;109:5136-42; Berg et al. J Clin Oncol 2005;23:3376-82

Relapsed T-ALL: Nelarabine Combinations

 \mathbf{O}

Ν

 NH_2

HΟ

Shimony, Luskin, DeAngelo DFCI experience, unpublished data

Relapsed ALL

New: Effective salvage, particularly for B-ALL

ALL Conclusions

- ALL is a rare disease approximately 50% of cases in adults.
- Outcomes in adults lag excellent pediatric outcomes, but improving.
- Treatment is dictated by age and Philadelphia chromosome status.
- Innovation is focused on improved risk stratification (MRD techniques) and incorporation of novel agents – TKIs, antibody therapies, cellular therapy, and optimization of transplant – in first line and relapsed disease.

Much Left To Be Done.

- T-cell ALL remains an area of unmet need.
- Further studies to define best way to incorporate novel agents, CAR-T, BMT into the treatment of adults with ALL, tailored to age, disease subtype (B vs T, genetic subtype), and response.
- Careful reporting of long-term as well as short term outcomes.
- Attention to representative enrollment to clinical trials based on age, race, ethnicity, socio-economic resources, geography this is key.

DFCI Adult Leukemia Team

- Richard M. Stone MD
- Daniel J. DeAngelo MD, PhD
- Martha Wadleigh MD
- Jacqueline S. Garcia MD
- Eric S. Winer MD
- Rahul Vedula MD
- Maximilian Stahl MD
- Gregory Abel MD
- Lachelle Weeks MD
- Christopher Reilly MD
- Evan Chen MD
- Andrew Hantel MD

- Andrew Lane MD PhD
- R. Coleman Lindsley MD PhD
- Zuzana Tothova MD PhD
- Mark Murakami MD
- Anthony Letai MD PhD
- Ilene Galinsky NP
- Mary Gerard PA-C
- Theresa Nguyen NP
- Kelly Ling PA-C
- Patrice Osullivan NP
- Ryan Osborn NP