

Janssen Advisory board and	
committee	d independent review
Dncopeptides, Sorrento Data monitoring sa	afety committee
Alynlam, Pfizer, Takeda, BMS Research dollars	

KEY POINTS	 Understand diagnosis and staging of multiple myeloma Review treatment paradigm Immunotherapy for multiple myeloma Naked antibodies Antibody drug conjugates Bispecific antibodies Chimeric antigen receptor T-cell therapy (CART) Future directions
------------	--

Approximately 1-2% of all cancers
Approximately 1-2% of all cancers
Median age at diagnosis 65-74
10% are <50
More common in African American individuals

2022 Mayo Foundation for Medical Education and Research 1 WE

T-mAb	Newly diagnosed MM	RRMM
ab	D-VTd	D-Pd
Ë	D-VMP	D-Kd
E	D-Rd	D-Vd
Daratumumab	Master: KRd ± Dara	D-Rd
õ	Perseus: VRd ± Dara	
Isatuximab	Isa-Kia (KRd ± Isa)	Isa-Pd
itux	(VRd ± Isa)	lsa-Kd
lsa	(VCd ± lsa)	

	Benefits	Risk
ANTIBODY DRUG CONJUGATE (ADC)	 Targeted release of chemotherapy/ immunotoxin/ immunotherapy Attracts immune cells that clear cancer even if the treatment does not Dead cancer cells attract even more immune effector cells enhancing its potential response 	 Still not 100% specific for myeloma cells and can cause tissue specific toxicity

BELANTAMAB + POM/DEX (ALGONQUIN STUDY, NCT03715478

Eligibility criteria ≥1 prior line, Len refractory, PI exposed or refractory, Mild/moderate renal impairment allowed

Most frequent AE's

Most trequent AE's Keratopathy 96.9%, blurred vision 87.5%, fatigue 59.4%, neutropenia (62.5%), thrombocytopenia (50%), fever (46.9%), diarrhea (34.4%), constipation (34.4%), and dry eye (28.1%)

Cohort	Median number for treatment cycles (range)	≥G3 Keratopathy (%)	≥G3 blurred vision n (%)	AEs leading to dose holds	AEs leading to dose reductions	≥VGPR n/N (%)	ORR n/N (%)	6-month PFS (%)
1.92 SINGLE n=12	13.5 (2-23)	5 (41.7%)	4 (33.3%)	7 (58.3%)	0 (0%)	7/11 (63.6%)	9/11 (81.8%)	80%
2.5 SINGLE n=7	27 (13-29)	7 (100%)	4 (57.1%)	7 (100%)	7 (100%)	7/77 (100%)	7/7 (100%)	100%
2.5 LOADING N=5	9 (5-17)	4 (80%)	0 (0%)	5 (100%)	5 (100%)	4/5 (80%)	5/5 (100%)	80%
2.5 BIMONTHLY (N=12)	6 (4-10)	10 (83.3%)	2 (16.7%)	7 (58.3%)	5 (41.7%)	9/12 (75%)	11/12 (91.7%)	100%
2.5 TRIMONTHLY N=11	6 (1-10)	8 (72.7%)	2 (18.2%)	4 (36.4%)	5 (45.5%)	4/7 (57.1%)	5/7 (71.4%)	75%
2.5 SPLIT	12.5 (3-22)	7 (87.5%)	4 (50%)	8 (100%)	6 (75%)	6/8 (75%)	7/8 (87.5%)	85.7%
3.4 SPLIT N=5	7.5 (1-21)	3 (60%)	2 (40%)	3 (60%)	1 (20%)	3/4 (75%)	4/4 (100%)	75%
All cohorts N=60	8 (1-29)	44 (73.3%)	18 (30%)	41 (68.3%)	29 (48.3%)	40/54 (74.1%)	48/54 (88.9%)	86.5%

BISPECIFIC ANTIBODIES Novel immune therapy approach designed to bind antigens on MM cells and cytotoxic T cells Early phase clinical trials targeting BCMA, GPRC5D, and FcRH5 have shown favorable safety profiles Most are IV or subcutaneous injections weekly or every other week Therapy is ongoing until progression Unknown sequence of therapy if benefit after CAR T

٦	[HERAPEU]	FIC <u>BISPEC</u>	IFIC T-CELI		RS FOR MM
	Drug	Prior lines	ORR (%) @ therapeutic dose	≥ VGPR (%)	G3+ CRS (%)
	AMG-701	6	83	50	9
,	TNB-33B	6	80	73	0
)))	REGN5458	5	62	NR	0
	Teclistamab (JNJ-64007957)	5	65	58	0
5	Elranatamab (PF-06863135)	8	83	66	0
	CC-93269	5	89	33	3
	Talquetamab (GPRC5D/CD3)	6	70	60	2
	Cevostamab (FcRH5/CD3)	6	53 Not RP2D	32	2

CEVOSTAMAB: FCRH5 BISPECIFIC ANTIBODY PHASE I STUDY

- FcRH5: Fc receptor homolog 5
- 100% expression on MM cells
- Humanized IgG
- Prior CART, bispecific ab, and ADC allowed
- IV q3 weeks, for 17 cycles
- Cycle 1 step wise dosing

N (%) unless stated	N=53
Any CRS event*	40 (76)
Grade 1	18 (34)
Grade 2	21 (40)
Grade 3	1 (2)†
Median time to onset, hours (range)	6–12 (0–6, >48)‡
Any neurological event	15 (28)
Grade 1	10 (19)
Grade 2	5 (9)
Median time to onset, hours (range)	12–24 (0–6, >48) [‡]

All CRS events resolved with standard of care, tocilizumab (13 pts, 25%) or steroids (9 pts, 17%)

	lde-cel KarMMa-1 ¹ (N = 128)	Cilta-cel CARTITUDE -1 ² (N = 97)	P-BCMA- 101 PRIME ³ (N = 55)	Bb21217 CRB-402 ⁴ (N = 69)	CT053 LUMMICAR- 2 ⁵ (N = 20)	Allo-718 UNIVERS L ⁶ (N = 31		
ORR	73%	97%	67%	73%	94%	60-67%		
CR/sCR	33%	67%		29%	29%			
Durability	mPFS 8.8 mo	12 mo PFS 76%	NA	mDOR 17 mo	NA	NA		

WHY DOES CAR T NOT ALWAYS WORK ?

MM is too aggressive (progresses before infusion)

Patient T cells are less effective

Do not persist long enough

Loss of target by MM cell

47

FUTURE OF CAR T-CELL THERAPY

- Obtaining T cells earlier in the disease
- Obtain T cells from healthy donors
- Use other targets other than BCMA
- Manufacturing differences, optimize to expedite manufacturing

