

UNDERSTANDING NOVEL TREATMENT OPTIONS FOR LYMPHOMA: TREATMENT OPTIONS BEYOND CHEMOTHERAPY

Jonas Paludo, MD
Assistant Professor of Medicine and
Oncology
Mayo Clinic
Rochester, MN

BEATING CANCER IS IN OUR BLOOD.

UNDERSTANDING NOVEL TREATMENT OPTIONS

TREATMENT OPTIONS BEYOND CHEMOTHERAPY

Jonas Paludo, MD

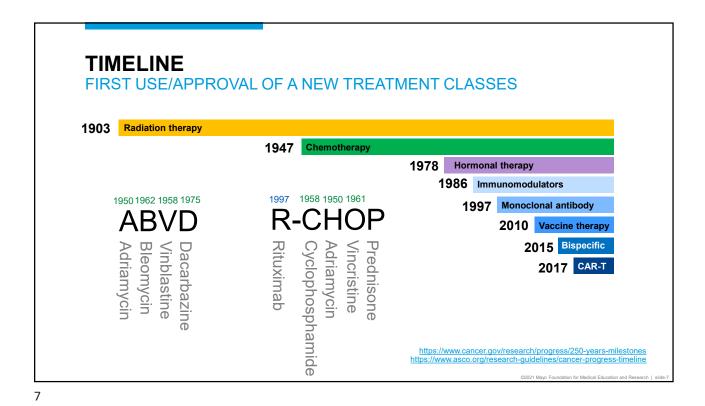
Assistant Professor of Medicine and Oncology Mayo Clinic

2021 Mayo Foundation for Medical Education and Research | slide

3

LEARNING OBJECTIVE

- 1. Timeline of Cancer Treatment Development
- 2. Immune System & Cancer
- 3. Immunotherapy


2021 Mayo Foundation for Medical Education and Research | slid

TIMELINE OF CANCER TREATMENT DEVELOPMENT

©2021 Mayo Foundation for Medical Education and Research | slide-5

5

TIMELINE FIRST USE/APPROVAL OF A NEW TREATMENT CLASSES 1903 Radiation therapy 1947 Chemotherapy 1978 Hormonal therapy 1986 Immunomodulators 1997 Monoclonal antibody 2010 Vaccine therapy 2015 Bispecific 2017 CAR-T

DRUGS APPROVED FOR NON-HODGKIN LYMPHOMA

- Acalabrutinib Brentuximab Vedotin
- Copanlisib
- Hydrochloride
- Nelarabine
- Axicabtagene Ciloleucel Belinostat
- Belinostat
- Rendamustine
- Hydrochloride Bendamustine
- Hydrochloride

 10. BCNU (Carmustine)
- 11. Bleomycin Sulfate
 12. Bortezomib
- 13. Brentuximab Vedotin 14. Brexucabtagene
- Autoleucel

 15. Lisocabtagene
- Maraleucel
- 17. Acalabrutinib

- 19. Chlorambucil 20. Copanlisib
- Hydrochloride 21. Duvelisib
- 22. Crizotinib
- 23. Cyclophosphamide
- 26. Doxorubicin
- 27. Duvelisib
- 28. Pralatrexate 29. Obinutuzumab
- 32. Idelalisib
- 33. Ibrutinib
- 34. Recombinant Interferon
- 38. Lenalidomide

- 39. Chlorambucil 40. Lisocabtagene Maraleucel
- 41. Loncastuximab

- 24. Denileukin Diftitox25. Dexamethasone

 - Hydrochloride

 - 49. Pembrolizumab
- 30. Ibritumomab Tiuxetan 31. Ibrutinib
- Alfa-2b
 35. Romidepsin
 36. Pembrolizumab
 37. Tisagenlecleucel
 - 57. Rituximab

- 58. Rituximab and
- 59. Rituximab 60. Rituximab and

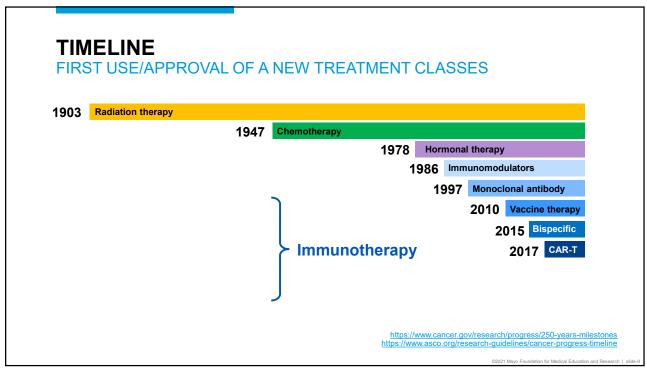
- Tesirine-lpyl 42. Methotrexate Sodium
- 43. Mogamulizumab-kpkc 44. Tafasitamab-cxix
- 45 Plerixafor
- 46. Nelarabine 47. Obinutuzumab
- 48. Denileukin Diftitox
- 50. Plerixafor 51. Polatuzumab Vedotin-
- piiq 52. Mogamulizumab-kpkc
- 53. Pralatrexate 54. Prednisone
- 55. Recombinant Interferon
- 56. Lenalidomide

- Hyaluronidase Human

- Hyaluronidase Human 61. Romidepsin
- 62. Selinexor
- 63. Tafasitamab-cxix
- 64. Tazemetostat
- 65. Tazemetostat
- Hydrobromide 66. Brexucabtagene
- Autoleucel
 67. Tisagenlecleucel
- 68. Methotrexate Sodium 69. Umbralisib Tosylate
- 70. Venetoclax 71. Vinblastine Sulfate
- 72. Vincristine Sulfate 73. Vorinostat
- 74. Zanubrutinib 75. Ibritumomab Tiuxetan
- 80. EPOCH 81. Hyper-CVAD 82. ICE 83. R-CHOP 84. R-CVP 85. R-EPOCH 86. R-ICE

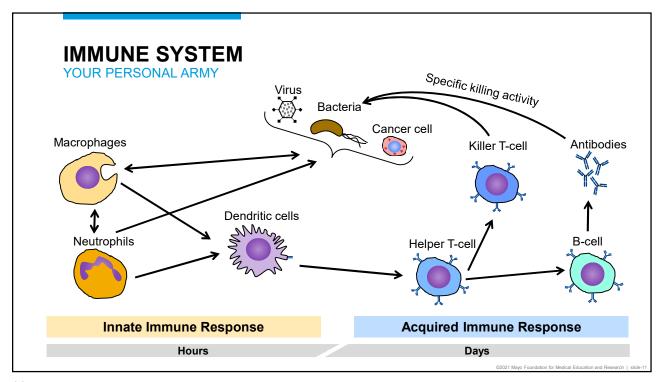
78. COPP 79. CVP

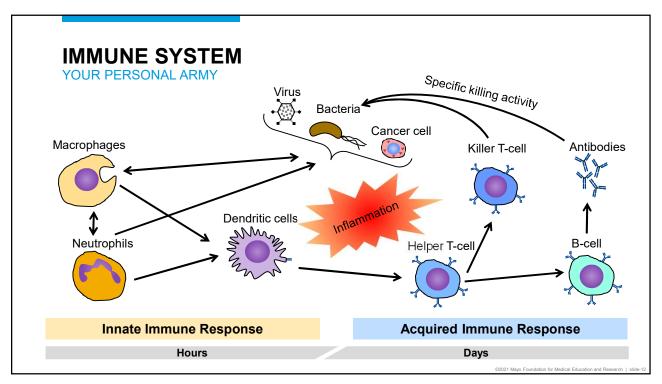
80. EPOCH


76. Loncastuximab

Tesirine-Ipyl

Drug Combinations Used


in Non-Hodgkin Lymphoma 77. CHOP


https://www.cancer.gov/about-cancer/treatment/drugs/non-hodgkin

MMUNE SYSTEM & CANCER: A BATTLE BETWEEN GOOD AND EVIL

021 Mayo Foundation for Medical Education and Research | slide-10

IMMUNE SYSTEM

YOUR PERSONAL ARMY

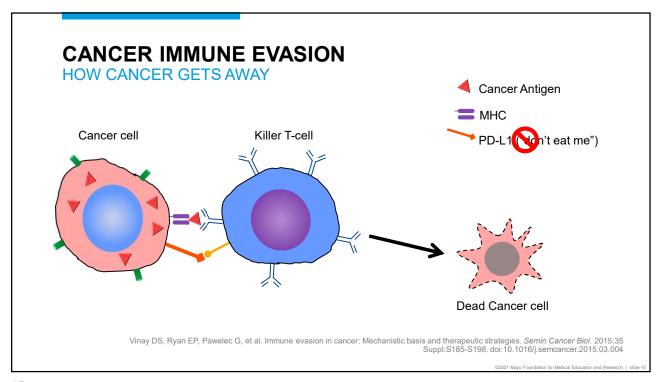
- Constant fight against the enemy, fighting off cancer cells, virus, bacteria...
- If the immune system is so effective, then why we develop cancer??

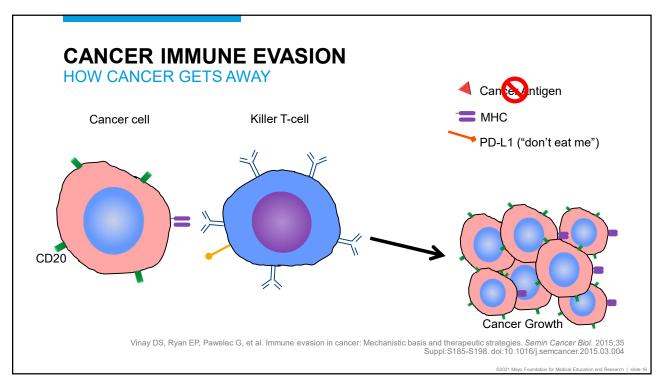
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013 Jul 25;39(1):1-10. doi: 10.1016/j.immuni.2013.07.012. PMID: 23890059.

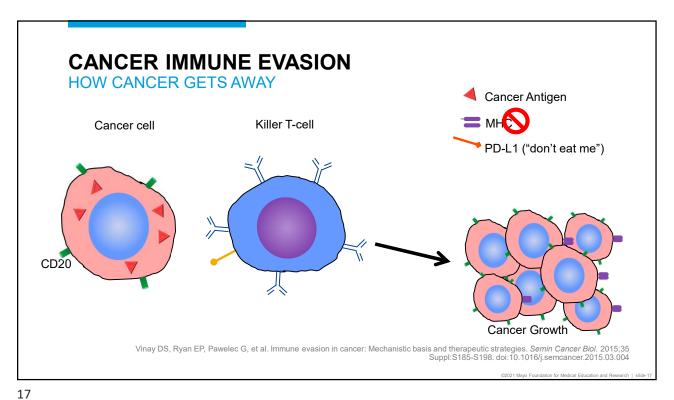
2021 Mayo Foundation for Medical Education and Research | slide-1

13

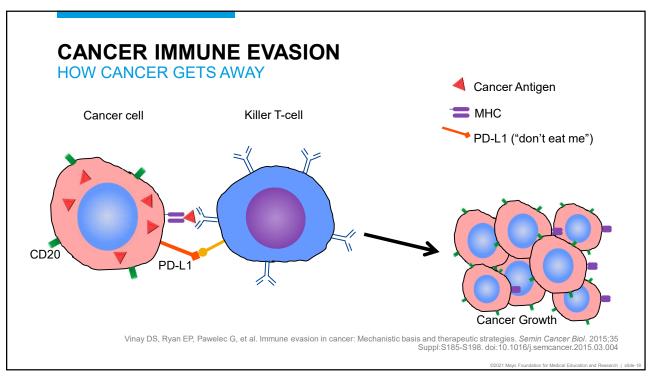
CANCER IMMUNE EVASION


HOW CANCER GETS AWAY


- Strategies of immune evasion
 - Immune suppression
 - Cancer-produced cytokines
 - Inhibitory molecules ("don't eat me" signal)
 - Loss of tumor antigen
 - Loss of MHC* or antigen processing machinery


*MHC: Major histocompatibility complex

Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35 Suppl:S185-S198. doi:10.1016/j.semcancer.2015.03.004


©2021 Mayo Foundation for Medical Education and Research | slide-14

--

IMMUNOTHERAPY:

ENHANCING YOUR IMMUNE SYSTEM TO FIGHT CANCER

©2021 Mayo Foundation for Medical Education and Research | slide-1

19

IMMUNOTHERAPY CLASSES

- 1. Antibody-based therapies
- 2. Immunomodulators
- 3. Cell-based therapies
- 4. Vaccines
- 5. Oncolytic viruses

2021 Mayo Foundation for Medical Education and Research | slide-20

IMMUNOTHERAPY CLASSES

- 1. Antibody-based therapies
 - a. "Naked" antibodies
 - b. Antibody-drug conjugates
 - c. Bispecific antibodies
- 2. Immunomodulators
 - a. Check point inhibitors
 - b. Cytokines
- 3. Cell-based therapies
 - a. CAR-T cell therapy
 - b. Tumor-infiltrating lymphocytes
 - c. Natural Killer cell therapy

©2021 Mayo Foundation for Medical Education and Research | slide-

21

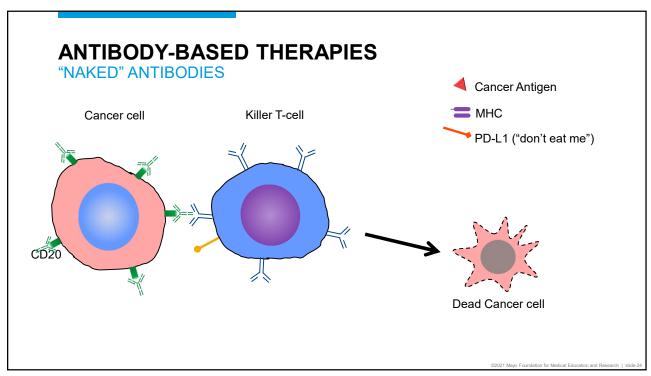
IMMUNOTHERAPY CLASSES

- 1. Antibody-based therapies
 - a. "Naked" antibodies
 - b. Antibody-drug conjugates
 - c. Bispecific antibodies
- 2. Immunomodulators
 - a. Check point inhibitors
 - b. Cytokines
- 3. Cell-based therapies
 - a. CAR-T cell therapy
 - b. Tumor-infiltrating lymphocytes
 - c. Natural Killer cell therapy

021 Mayo Foundation for Medical Education and Research | slide-22

ANTIBODY-BASED THERAPIES

"NAKED" ANTIBODIES


- Targeted monoclonal antibodies
- Binds to a specific target on cells signaling to immune system to destroy it.
 - Immune-mediated killing

Drug	Target
Rituximab, obinutuzumab, ofatumumab	CD20
Tafasitamab	CD19
Alemtuzumab	CD52

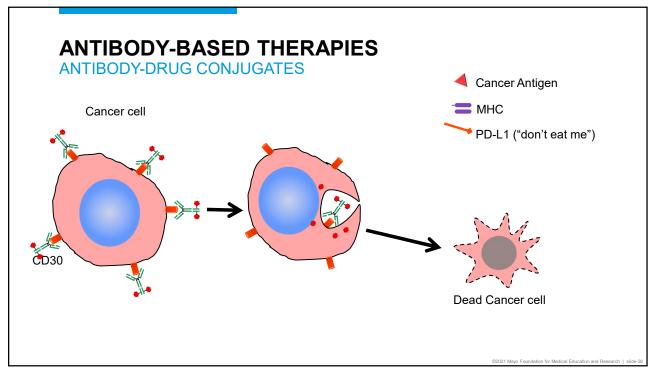
Novo, Mattia et al. "Antibody Therapies for Large B-Cell Lymphoma." Biologics : targets & therapy vol. 15 153-174. 18 May. 2021, doi:10.2147/BTT.S281618

©2021 Mayo Foundation for Medical Education and Research | slide-23

23

ANTIBODY-BASED THERAPIES

ANTIBODY-DRUG CONJUGATES


- Targeted antibody carrying an anti-cancer drug
- Monoclonal antibody = delivery system, specific to a cancer cell type
- Chemotherapy drug = payload, kills the cancer cell

Drug	Target / Anti-cancer drug
Brentuximab vedotin	CD30 / MMAE
Polatuzumab vedotin	CD79b / MMAE
Loncastuximab tesirine	CD19 / PBD dimer

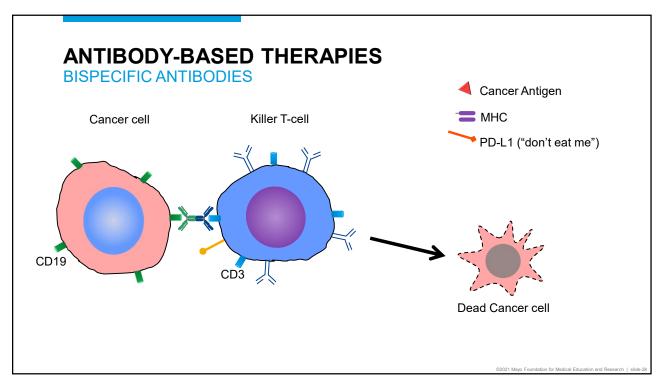
Chu, Yurou et al. "Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress." Journal of hematology & oncology vol. 14,1 88. 5 Jun. 2021, doi:10.1186/s13045-021-01097-z

2021 Mayo Foundation for Medical Education and Research | slide-2

25

ANTIBODY-BASED THERAPIES

BISPECIFIC ANTIBODIES


- 2 targeted antibodies combined
- Attached to 2 different targets at the same time.
 - Connect an immune cell to a cancer cell, leading the immune cell to destroy the cancer cell

Drug	Target / Target
Blinatumomab	CD19 / CD3

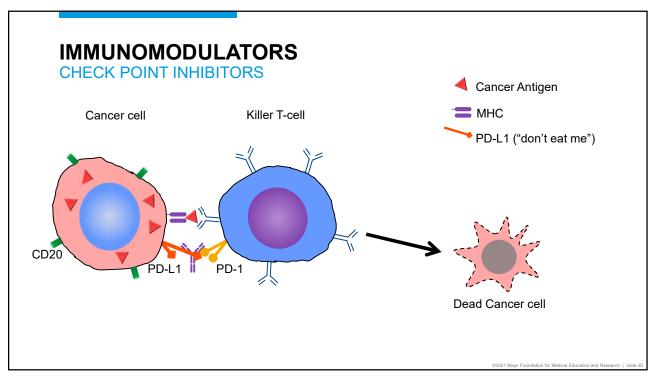
Khattak, Z.E., Hashmi, H., Khan, S.I. et al. Dawn of a new era of antibody-drug conjugates and bispecific T-cell engagers for treatment of multiple myeloma: a systematic review of literature. Ann Hematol (2021). https://doi.org/10.1007/s00277-021-04599-5

2021 Mayo Foundation for Medical Education and Research | slide-2

27

IMMUNOMODULATORS

CHECK POINT INHIBITORS


- Antibody that blocks the "don't eat me" signal (or the "breaks" of the immune system)
- Cancer cells can shut down the immune cells by expressing "don't eat me" signals
 - CTLA-4, PD-L1/PD-1

Drug	Target
Nivolumab	PD-L1/PD-1
Pembrolizumab	PD-L1/PD-1
Ipilimumab	CTLA4

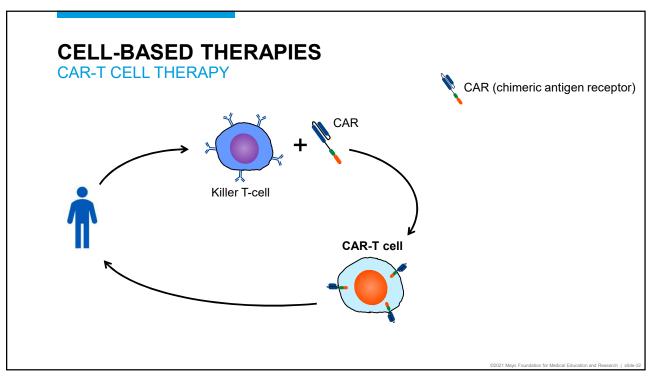
Novo, Mattia et al. "Antibody Therapies for Large B-Cell Lymphoma." Biologics : targets & therapy vol. 15 153-174. 18 May. 2021, doi:10.2147/BTT.S281618

©2021 Mayo Foundation for Medical Education and Research | slide-29

29

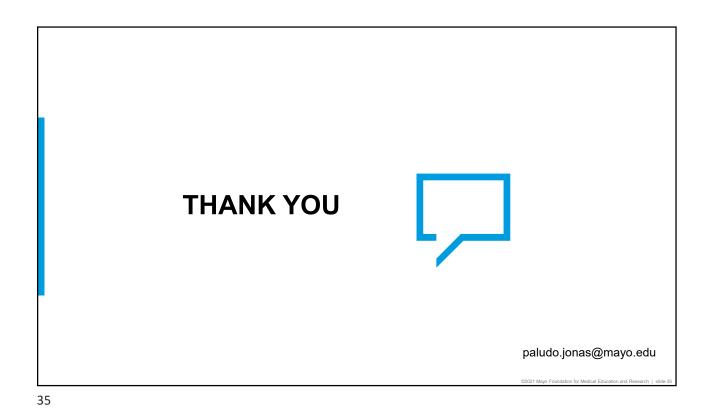
CELL-BASED THERAPIES

CAR-T CELL THERAPY

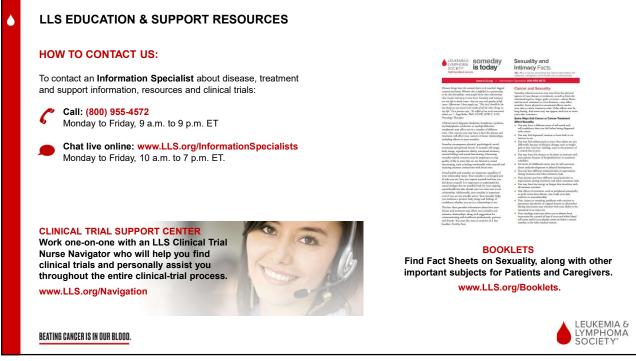

- T-cell (immune cell) modified to target a specific cancer marker
- CAR-T cells bypass several evasion mechanisms from cancer cells
 - It's an "army division" in a bottle

Drug	Target
Axicabtagene Ciloleucel	CD19
Brexucabtagene Autoleucel	CD19
Lisocabtagene Maraleucel	CD19
Tisagenlecleucel	CD19
Idecabtagene vicleucel	BCMA

Guedan, Sonia et al. "Emerging Cellular Therapies for Cancer." Annual review of immunology vol. 37 (2019): 145-171. doi:10.1146/annurev-immunol-042718-041407


2021 Mayo Foundation for Medical Education and Research | slide-3

31




1. Timeline of Cancer Treatment Development 2. Immune System & Cancer evasion 3. Immunotherapy 1. Antibody-based therapy 2. Check point inhibitors 3. CAR-T cell therapy

• QUESTIONS & ANSWERS
With Dr. Paludo

BEATING CANCER IS IN OUR BLOOD.

