











|               | Conventional     | IMiDs        | Proteasome<br>Inhibitors       | HDAC<br>inhibitors | Immunologic<br>approaches       |
|---------------|------------------|--------------|--------------------------------|--------------------|---------------------------------|
| Prednisone    | Melphalan        | Thalidomide  | Bortezomib                     | Panobinostat       | Daratumumab: anti<br>CD38       |
| Dexamethasone | Cyclophosphamide | Lenalidomide | Carfilzomib<br>(low/high dose) |                    | Elotuzumab :<br>anti CS1/SLAMF7 |
|               | Doxil            | Pomalidomide | Ixazomib                       |                    |                                 |
|               | DCEP/D-PACE      |              |                                |                    |                                 |
|               | METRO28          |              |                                |                    |                                 |
|               | BCNU             |              |                                |                    |                                 |
|               | Bendamustine     |              |                                |                    |                                 |





## Goals of Initial Therapy: Optimize Risk/Benefit

- Increase Benefits:
  - Overall Survival
  - Progression Free Survival
  - Rapid/deep response i.e. reversal of CRAB symptoms
  - Improve Quality of Life
  - Adequate Stem Cell Harvest (if eligible)
  - Overcome High Risk Disease
  - Attain Minimal Residual Disease Negativity

- Decrease Risks:
  - Treatment Related Death
  - Treatment Related Morbidity: eg. VTE, SPM, VZV, neutropenia, CHF
  - Avoid clonal resistance ie. minimize impact on 2<sup>nd</sup> PFS/TTP
  - Patient Costs
  - Health Care Costs























| GRIFFIN                        | N D-RVd vs R                                     | Vd: Sı                                | ıbgroup A                         | nalyses by                           | the End of C                                  | onsolidation                                    |
|--------------------------------|--------------------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------------|-------------------------------------------------|
|                                | Stringent Complete I                             | Response                              | a                                 | М                                    | inimal Residual Disea                         | se Negative <sup>b</sup>                        |
| Subgroup, n/N (%)              | RVd D-RVd                                        | •                                     | Odds Ratio (95% CI)               | Subgroup, n/N (%)                    | RVd D-RVd                                     | Odds Ratio (95% CI)                             |
| Sex                            |                                                  |                                       |                                   | Sex                                  |                                               |                                                 |
| Male                           | 18/55 (32.7) 21/55 (38.2)                        | H <del>i</del> H -                    | 1.27 (0.58-2.78)                  | Male                                 | 6/60 (10.0) 20/58 (34.5)                      | 4.74 (1.74–12.91)                               |
| Female                         | 13/42 (31.0) 21/44 (47.7)                        |                                       | 2.04 (0.84-4.92)                  | Female                               | 9/43 (20.9) 26/46 (56.5)                      | 4.91 (1.92–12.55)                               |
| Age                            |                                                  |                                       | . ,                               | Age                                  |                                               |                                                 |
| <65 vears                      | 22/70 (31.4) 30/72 (41.7)                        | H <b>●</b> -I                         | 1.56 (0.78-3.10)                  | <65 years                            | 10/75 (13.3) 35/76 (46.1)                     | 5.55 (2.48-12.40)                               |
| ≥65 years                      | 9/27 (33.3) 12/27 (44.4)                         | H-                                    | 1.60 (0.53-4.82)                  | >65 years                            | 5/28 (17.9) 11/28 (39.3)                      | 2 98 (0.87–10.17)                               |
| ISS disease stage              |                                                  |                                       |                                   | ISS disease stage                    | 0.20 (11.0) 1.120 (00.0)                      |                                                 |
| l                              | 11/48 (22.9) 19/48 (39.6)                        | ⊬⊷⊣                                   | 2.20 (0.91-5.35)                  | I                                    | 5/50 (10.0) 21/49 (42.9)                      | 6 75 (2 28–19 94)                               |
|                                | 12/35 (34.3) 17/37 (45.9)                        | H-I                                   | 1 63 (0 63-4 22)                  |                                      | 7/37 (18.9) 17/40 (42.5)                      |                                                 |
|                                | 7/13 (53.8) 6/14 (42.9)                          |                                       | 0.64 (0.14-2.94)                  |                                      | 3/14 (21.4) 8/14 (57.1)                       | 4 89 (0.93–25.67)                               |
| Type of MM <sup>o</sup>        | 110 (00.0) 0/11 (12.0) 1                         |                                       | 0.01 (0.11 2.01)                  | Type of MM <sup>c</sup>              | 0/14(21.4) 0/14(07.1)                         | 1 4.00 (0.00 20.07)                             |
| InG                            | 8/51 (15.7) 15/51 (29.4)                         | i i i i i i i i i i i i i i i i i i i | 2 24 (0 85-5 88)                  |                                      | 8/52 (15 1) 21/55 (13 6)                      |                                                 |
| Non-laG                        | 23/46 (50.0) 25/45 (55.6)                        |                                       | 1 25 (0 55-2 85)                  | Non-IaG                              | 7/51 (13.7) 20/46 (43.5)                      |                                                 |
| Cytogenetic riskd              | 20/40 (00:0) 20/40 (00:0)                        | 151                                   | 1.20 (0.00 2.00)                  | Cytogenetic riskd                    | 1131 (13.7) 20/40 (43.3)                      | 1 4.04 (1.00-12.33)                             |
| High rick                      | <u>//13 (30.8) 3/16 (18.8)</u>                   |                                       | 0.52 (0.09-2.90)                  | High rick                            | 2/14 (21.4) 5/16 (21.2)                       | 1.67 (0.22, 9.74)                               |
| Standard rick                  | 26/80 (32.5) 39/79 (49.4)                        |                                       | 2.03 (1.06-3.85)                  | Stondard rick                        | 12/02 /14 5) 20/02 (47.6)                     | 5 27 (2 54 11 26)                               |
| ECOG performance e             | 20/00 (32.3) 39/19 (49.4)                        |                                       | 2.03 (1.00-3.03)                  | ECOC porformance et                  | 12/03 (14.5) 39/02 (47.0)                     |                                                 |
| 0                              | 12/20 (22 2) 16/29 (42 1)                        | للمنا                                 | 1 45 (0 59 2 67)                  | 2000 periormance si                  | 2/40 /7 E) 47/20 (42 C)                       |                                                 |
| 1 or 2                         | 19/59 (33.3) 10/36 (42.1)                        |                                       | 1.45 (0.56-5.67)                  | 0                                    | 3/40 (7.5) 17/39 (43.6)                       | 9.53 (2.51–36.25)                               |
| 1012                           | 18/38 (31.0) 23/00 (41.7)                        |                                       | 1.59 (0.74-5.56)                  | 1 OF 2                               | 12/62 (19.4) 29/62 (46.8)                     | 3.66 (1.64–8.18)                                |
|                                | η                                                |                                       |                                   | '\                                   | <del></del>                                   | <u>, , , , , , , , , , , , , , , , , , , </u>   |
| $\backslash$                   | 0.1                                              | 1 10                                  | 100                               | $\mathbf{X}$                         |                                               | 1 10 100                                        |
|                                | +                                                |                                       | → /                               |                                      | +                                             | > /                                             |
|                                | RVd E                                            | Better D-RVd B                        | etter                             |                                      | RVd Bett                                      | er D-RVd Better                                 |
|                                |                                                  |                                       |                                   |                                      |                                               |                                                 |
| D-RVd wa                       | as favored across                                | all subo                              | aroups for M                      | RD negativity                        | / and across all s                            | ubaroups for sCR                                |
|                                | to everythe himle                                |                                       |                                   |                                      |                                               |                                                 |
| ra ra                          | ate, except nign-r                               | isk cyto                              | genetics and                      | a iss stage ill                      | rdisease (though                              | ns small)                                       |
| Response-evaluable population  | n. bITT population. Based on patients who ha     | d measurable disea                    | se in serum. dBased on patients v | vith available cytogenetics results. | . A high-risk cytogenetic profile was defined | by the detection of a del(17p), t(4;14), and/or |
| t(14;16) cytogenetic abnormali | ty on fluorescence in situ hybridization testing | •                                     |                                   |                                      |                                               | Voorhees et al IMW 2019.                        |

|                                    | D-RVa     | l (n = 99)   | RVd (1    | n = 102)     |
|------------------------------------|-----------|--------------|-----------|--------------|
|                                    | Any grade | Grade 3 or 4 | Any grade | Grade 3 or 4 |
| Iematologic, n (%)                 |           |              |           |              |
| Neutropenia                        | 48 (49)   | 32 (32)      | 32 (31)   | 15 (15)      |
| Thrombocytopenia                   | 43 (43)   | 16 (16)      | 31 (30)   | 8 (8)        |
| Leukopenia                         | 34 (34)   | 15 (15)      | 27 (27)   | 7 (7)        |
| Anemia                             | 32 (32)   | 8 (8)        | 32 (31)   | 6 (6)        |
| Lymphopenia                        | 30 (30)   | 23 (23)      | 29 (28)   | 23 (23)      |
| on-hematologic, n (%)              |           |              |           |              |
| Fatigue                            | 61 (62)   | 5 (5)        | 56 (55)   | 4 (4)        |
| Peripheral neuropathy <sup>b</sup> | 58 (59)   | 7 (7)        | 74 (73)   | 7 (7)        |
| Diarrhea                           | 53 (54)   | 6 (6)        | 43 (42)   | 4 (4)        |
| Constipation                       | 46 (47)   | 2 (2)        | 41 (40)   | 1(1)         |
| Nausea                             | 46 (47)   | 1 (1)        | 47 (46)   | 1(1)         |
| Upper respiratory tract infection  | 46 (47)   | 1(1)         | 37 (36)   | 1(1)         |
| Pyrexia                            | 39 (39)   | 2 (2)        | 25 (25)   | 3 (3)        |
| Insomnia                           | 39 (39)   | 2 (2)        | 30 (29)   | 1 (1)        |
| Cough                              | 38 (38)   | 0            | 25 (25)   | 0            |
| Edema peripheral                   | 32 (32)   | 2 (2)        | 35 (34)   | 3 (3)        |
| Back pain                          | 32 (32)   | 1 (1)        | 28 (28)   | 4 (4)        |
| Infusion-related reactions         | 41 (41)   | 5 (5)        | _         | -            |

Any-grade infections DRVd vs RVd: 81 (82%) vs 56 (55%); grade 3/4 infections were similar 17 (17%)patients each
Median CD34<sup>+</sup> cell yield (10<sup>6</sup> cells/kg) 8.1vs 9.4; 66 (70%) vs 44(55%) plerixafor use but engraftment times comparable Voorhees et al IMW 2019.

| Study                                                      | IFM 2009<br>RVd-SCT vs RVd |     | FO<br>KRd-SC     | FORTE<br>KRd-SCT vs KRd |                  | opeia<br>CT<br>d vs VTd | Griffin<br>SCT<br>DaraVRd vs VRd |       |
|------------------------------------------------------------|----------------------------|-----|------------------|-------------------------|------------------|-------------------------|----------------------------------|-------|
| # (28 day cycles) chemo<br>induction to post consolidation | 3.75                       | 6   | 8                | 12                      | (                | 5                       | 4.5                              |       |
| SCH mobilization                                           | Cyclophosphamide           |     | Cyclophosphamide |                         | Cyclophosphamide |                         | GCSF+ Plerixafor                 |       |
| post-consolidation ORR                                     | N/A                        | N/A | N/A              | N/A                     | 93%              | 81%                     | 99%                              | 91.8% |
| post-consolidation $\geq$ VGPR                             | 78%                        | 69% | 89%              | 87%                     | 83.4%            | 78%                     | 90.9%                            | 73.2% |
| post-consolidation sCR                                     | N/A                        | N/A | 44%              | 43%                     | 28.9%            | 20.3%                   | 42.4%                            | 32%   |
| PFS improvement over control arm                           | 3:                         | 5%  | Unk              | nown                    | 53               | %                       | N                                | R     |











Phase III MAIA Study: ASCT-Ineligible Newly-**Diagnosed Myeloma** D-Rd (n = 368) > NDMM ASCT ineligible Primary endpoint: Daratumumab (16 mg/kg IV)<sup>a</sup> Cycles 1-2: QW Cycles 3-6: Q2W • PFS > Median age 73 (45-90) ➢ ECOG 0-2 Key secondary Cycles 7+: Q4W until PD endpoints<sup>c</sup>: > CrCl ≥30 mL/min R: 25 mg PO daily on Days 1-21 until PD d: 40 mg<sup>b</sup> PO or IV weekly until PD ≥CR rate > Transaminases<2.5xULN ≥VGPR rate > 14% were high risk t(4;14), MRD-negative rate Rd (n = 369) (NGS; 10-5) t(14;16), or del17p • ORR • OS R: 25 mg PO daily on Days 1-21 until PD d: 40 mg<sup>b</sup> PO or IV weekly until PD · Safety Cycle: 28 days · Treatment discontinuation rate favored daratumumab arm vs. control: Disease progression: 14.6% vs. 23.8% Adverse events: 7.4% vs. 16.2% Death: 6.9% vs 6.3%

Facon NEJM 2019; 380:2104-15.





| Table 3. Most Common Adverse Events ar | nd Second Primary Ca | ncers Reported duri | ng Treatment in th | e Safety        |                                       |
|----------------------------------------|----------------------|---------------------|--------------------|-----------------|---------------------------------------|
| Event                                  | Daratumu<br>(N =     | mab Group<br>364)   | Contro<br>(N =     | l Group<br>365) |                                       |
|                                        | Any Grade            | Grade 3 or 4        | Any Grade          | Grade 3 or 4    |                                       |
|                                        |                      | number of pati      | ents (percent)     |                 |                                       |
| Hematologic adverse events             |                      | in the second parts |                    |                 |                                       |
| Neutropenia                            | 207 (56.9)           | 182 (50.0)          | 154 (42.2)         | 129 (35.3)      |                                       |
| Anemia                                 | 126 (34.6)           | 43 (11.8)           | 138 (37.8)         | 72 (19.7)       | Lenalidomide dose intensity % (range  |
| Leukopenia                             | 68 (18.7)            | 40 (11.0)           | 34 (9.3)           | 18 (4.9)        | DaraRd vs. Rd                         |
| Lymphopenia                            | 66 (18.1)            | 55 (15.1)           | 45 (12.3)          | 39 (10.7)       | 76.2% (7.9-240.9) vs 91.4% (4.8-2)    |
| Nonhematologic adverse events          |                      |                     |                    | 5 C             | 70.270 (7.9-240.9) V3. 91.470 (4.0-2. |
| Infections                             | 314 (86.3)           | 117 (32.1)          | 268 (73.4)         | 85 (23.3)       |                                       |
| Pneumonia                              | 82 (22.5)            | 50 (13.7)           | 46 (12.6)          | 29 (7.9)        |                                       |
| Diarrhea                               | 207 (56.9)           | 24 (6.6)            | 168 (46.0)         | 15 (4.1)        |                                       |
| Constipation                           | 149 (40.9)           | 6 (1.6)             | 130 (35.6)         | 1 (0.3)         |                                       |
| Fatigue                                | 147 (40.4)           | 29 (8.0)            | 104 (28.5)         | 14 (3.8)        |                                       |
| Peripheral edema                       | 140 (38.5)           | 7 (1.9)             | 107 (29.3)         | 2 (0.5)         |                                       |
| Back pain                              | 123 (33.8)           | 11 (3.0)            | 96 (26.3)          | 11 (3.0)        |                                       |
| Asthenia                               | 117 (32.1)           | 16 (4.4)            | 90 (24.7)          | 13 (3.6)        |                                       |
| Nausea                                 | 115 (31.6)           | 5 (1.4)             | 84 (23.0)          | 2 (0.5)         |                                       |
| Second primary cancer†                 | 32 (8.8)             | NA                  | 26 (7.1)           | NA              |                                       |
| Invasive second primary cancer         | 12 (3.3)             | NA                  | 13 (3.6)           | NA              |                                       |
| Any infusion-related reaction          | 149 (40.9)           | 10 (2.7)            | NA                 | NA              |                                       |

| Study                               | SWO<br>VRd | G 777<br>vs Rd | <b>RVd-lite</b> | MAIA<br>DaraRd vs Rd |      |  |
|-------------------------------------|------------|----------------|-----------------|----------------------|------|--|
| Ν                                   | 242        | 229            | 50              | 368                  | 368  |  |
| Median age                          | 6          | 63             | 73              | 7                    | 73   |  |
| ORR                                 | 82%        | 72%            | 86%             | 93%                  | 81%  |  |
| CR                                  | 16%        | 8.4%           | 44%             | 49%                  | 25%  |  |
| Median PFS, mos                     | 43         | 30             | 35.1            | NR                   | 31.9 |  |
| PFS improvement over<br>control arm | 29         | 9%             | N/A             | 44                   | 1%   |  |
| OS improvement over control arm     | 29         | 9%             | N/A             | N                    | /A   |  |

Duriet et al. Lancet 2017; 389: 519-527 O'Donnell. Br J Haematol. 2018;182:222. Mateos MV, et al. NEJM. 2018;378:518-528. Dimopolous et al. ASH 2018 Facon et al. NEJM 2019; 380:2104-15.

# Overview: Relapsed Myeloma First relapse: randomized studies Lenalidomide-desamethasone control arms Bortezomite-desamethasone control arms Bortezomite-desamethasone control arms High-risk disease Second and third relapse Fourth relapse and beyond

### 33

# Randomized Studies in Early Relapse 1–3 lines of Prior Therapy, General Considerations

- · Choice of PI- or IMiD-based partner depends on prior treatment
- Historically, +/- steroids
  - thalidomide/bortezomib/lenalidomide: ORR 30-60%, PFS 6-11 mos
  - carfilzomib/pomalidomide/daratumumab: ORR 25-30%, PFS 3.5-4 mos
- Triplets consistently perform better than doublets
- · Cross trial comparisons should not be done as
  - Patient populations are different
  - Disease burden and high-risk genetics are different
  - Prior therapy exposures are different
  - As a result, outcomes of identical control arms vary significantly between trials

# **Randomized Studies With Lenalidomide-Dexamethasone Control Arms**

|                                     | Carfilzomib* |         | Elotuz    | Elotuzumab |     | mumab   | Ixazomib  |         |
|-------------------------------------|--------------|---------|-----------|------------|-----|---------|-----------|---------|
| Ν                                   | KRd vs Rd    |         | ERd vs Rd |            | DRd | vs Rd   | IRd vs Rd |         |
| Efficacy                            | Тх           | Control | Тх        | Control    | Тх  | Control | Тх        | Control |
| ORR                                 | 87.1%        | 66.7%   | 79%       | 66%        | 93% | 76%     | 78.3%     | 71.5%   |
| CR                                  | 32%          | 9.3%    | 5%        | 9%         | 55% | 23%     | 12%       | 7%      |
| Median PFS, mos                     | 26           | 16.6    | 19        | 14.9       | NR  | 17.5    | 21        | 14.7    |
| PFS improvement<br>over control arm | 31           | %       | 29        | 9%         | 56  | 5%      | 26        | 5%      |

Dimopoulos MA et al. N Engl J Med. 2016;375:1319; Dimopoulos MA et al. Br J Haematol. 2017;178:896; Stewart AK et al. N Engl J Med. 2015;372:142; Stewart AK et al. Blood. 2017;130: Abstract 743.; Dimopoulos M et al. J Hematol Oncol. 2018;11:49; Moreau P et al. N Engl J Med. 2016;374:1621.

35

# **Randomized Studies With Bortezomib-Dexamethasone Control Arms**

|                                     | Darat | tumumab* | Car  | filzomib | Pan                 | obinostat | Poma    | alidomide   | Ver                   | ietoclax                |
|-------------------------------------|-------|----------|------|----------|---------------------|-----------|---------|-------------|-----------------------|-------------------------|
| Ν                                   | DV    | 'd vs Vd | Ko   | l vs Vd  | FVd vs Vd PVd vs Vd |           | d vs Vd | VenVd vs Vd |                       |                         |
| Efficacy                            | Тх    | Control  | Тх   | Control  | Тх                  | Control   | Тх      | Control     | Тх                    | Control                 |
| ORR                                 | 85%   | 63%      | 76%  | 63%      | 55%                 | 61%       | 82%     | 50%         | 82%                   | 68%                     |
| CR                                  | 30%   | 10%      | 13%  | 6%       | 11%                 | 6%        | 16%     | 4%          | 13%                   | 1%                      |
| Median PFS, mos                     | 16.7  | 7.1      | 18.7 | 9.4      | 12                  | 8.08      | 11      | 7           | 22.4                  | 11.5                    |
| PFS improvement<br>over control arm | 68%   |          | 47%  |          | 37%                 |           | 39%     |             | 37%                   |                         |
|                                     |       |          |      |          |                     |           |         |             |                       |                         |
|                                     |       |          |      |          |                     |           |         |             | Risk of d<br>with ven | leath doubl<br>etoclax  |
|                                     |       |          |      |          |                     |           |         |             | Risk of d<br>with ven | leath double<br>etoclax |
|                                     |       |          |      |          |                     |           |         |             | Risk of d<br>with ven | leath double<br>etoclax |







### Outcomes of Lenalidomide Refractory Patients in Randomized Studies With Bortezomib-Dexamethasone Control Arms

- Many recent phase 3 RRMM studies were len-based and excluded len-refractory patients
- · The increasing adoption of len maintenance highlights a need for large studies in len-refractory RRMM

|                    | Daratumumab* |       | Carfil | zomib | Pomali | domide |
|--------------------|--------------|-------|--------|-------|--------|--------|
| Ν                  | DVd          | vs Vd | Kd v   | s Vd  | PVd    | vs Vd  |
| Ν                  | 251          | 247   | 464    | 465   | 281    | 278    |
| Median PFS, months | 16.7         | 7.1   | 18.7   | 9.4   | 11     | 7      |
| N = Len refractory | 45           | 60    | 113    | 122   | 200    | 191    |
| PFS                | 9.3          | 4.4   | 8.6    | 6.6   | 9.5    | 5.6    |

PFS of len refractory patients inferior to those of total study population.

Lentzsch S et al. Presented at Japanese Society of Hematology 79th Annual Meeting; October 2017. Abstract OS3-12D-2; Moreau P et al. Leukemia. 2017;31:115; Dimopoulos MA et al. Lancet Oncol. 2016;17:27; Richardson PG et al. J Clin Oncol. 2018;36: Abstract 8001.

39

# **Carfilzomib Combines Well With IMiDs and Antibodies**

| Drugs/Design                        | N          | RRMM<br>Med Lines | ORR        | Median PFS mos<br>(HR) | Median<br>OS mos |
|-------------------------------------|------------|-------------------|------------|------------------------|------------------|
| K 20/27 + dex 8                     | 266        | 5                 | 24%        | 3.7                    | 15.6             |
| K 70 wk D40 vs K 20/27 biw D40      | 240 vs 238 | 2-3               | 62 vs 41%  | 11.2 vs 7.6 (0.69)     | NR               |
|                                     |            |                   |            |                        |                  |
| K 20/36 biw Cy 500mg qwk Dex vs VCD | 201 vs 99  | 1                 | 84% vs 68% | 18                     | NR               |
| K 20/36 biw + pomalidomide + dex    | 60         | 1                 | 87%        | 18                     | NR               |
|                                     |            |                   |            |                        |                  |
| Daratumumab K 20/70 qwk dex         | 85         | 2                 | 84%        | NR                     | NR               |
| Daratumumab K 20/56 biw dex         | 466        | N/A               | N/A        | NR vs 15.8 (0.63)      | NR               |

- Attention to K dose and schedule (based on partner drugs, avoid 70 mg/m2 qwk with IMIDs given increase cardiac signal)
- Attention to infusion time (30 min for all doses  $\geq$  36 mg/mg2)
- Efficacy of carfilzomib improves as moves into earlier lines of therapy
- Encouraging activity in lenalidomide refractory disease
- In randomized phase 3 studies, low rates of cardiac events as well as low rates of K reduction/discontinuations/deaths, supported by overall survival benefits

# Pomalidomide Approved for Lenalidomide-Resistant Myeloma

| Drugs/Design                      | N          | RRMM<br>Med Lines | ORR        | Median PFS<br>mos (HR) | Median<br>OS mos |
|-----------------------------------|------------|-------------------|------------|------------------------|------------------|
| Pom 4 Dex vs High-dose dex        | 302 vs 153 | 5                 | 31 vs 10%  | 4.0 vs 1.9 (0.48)      | 12.7 vs 8.1      |
| Pom 4 Dex                         | 51         | 2                 | 29%        | 13.8                   | N/A              |
|                                   |            |                   |            |                        |                  |
| Pom4 /cy 400 qwk /dex vs Pom dex  | 34 vs 36   | 4                 | 65 vs 39%  | 9.5 vs 4.4 (0.54)      | NR vs 16.8       |
| Pom 4 + cy 50 bid + dex           | 28         | 3                 | 67%        | 14.5                   | NR               |
| Pom + bortezomib + dex vs Pom dex | 200 vs 191 | 2                 | 82% vs 50% | 11 vs 7 (0.61)         | NR               |
|                                   |            |                   |            |                        |                  |
| Pom 4 + daratumumab + dex         | 103        | 4                 | 66%        | 9.9                    | 17.5             |
| Dom + olotuzumoh +dox vo Dom dox  | 60 vo 57   | 2                 | E2 Vo 260/ | 10 2 10 4 7 (0 54)     | ND               |

- Efficacy of pomalidomide improves as moves into earlier lines of therapy

   Highlights need for randomized studies
- Monitor neutropenia especially with cyclophosphamide, CD38 mAbs though typically without apparent increase in rates of infection

San Miguel J et al. Lancet Oncol. 2013;14:1055; Siegel D et al. J Clin Oncol. 2017;35: Abstract 8027; Baz RC et al. Blood. 2016;127:2561; Chari A et al. Blood. 2016;128: Abstract 4520; Richardson PG et al. J Clin Oncol. 2018;36: Abstract 8001; Chari A et al. Blood. 2017;130:974; Richardson et al ASCO 2018 ; Dimopoulos MA et al. N Engl J Med. 2018;379:1811.





| •             | 72% of thr | ombocytopenic (   | N=36) patients r          | ecovered  | to >75,000 | )/μL    |
|---------------|------------|-------------------|---------------------------|-----------|------------|---------|
| ·             | 04% 01 110 | utropenic patient | S (IV-14) Tecover         | eu lo And | 2 >1,500   |         |
| Ref           | N          | Dates of SCT2     | Lines of Prior<br>Therapy | ORR       | PFS (mo)   | OS (mo) |
| 2             | 83         | Before 2006       | NR                        | NR        | 15.6       | 34.8    |
| 4             | 106        | 1990-2002         | NR                        | 63%       | NR         | 37      |
| 8             | 81         | 1992-2009         | 1                         | 97.4%     | 16.4       | 53      |
| 9             | 200        | 1992-2010         | 2                         | 80.4%     | 15.2       | 42.3    |
| 10            | 83         | 1994-2011         | NR                        | NR        | 15.5       | 31.5    |
| 11            | 187        | 1995-2008         | NR                        | NR        | 11.2       | 30      |
| 12            | 98         | 1994-2009         | 3                         | 85%       | 10.3       | 33      |
| 14            | 75         | 1995-2012         | 1                         | 82%       | 10.1       | 22.7    |
| 15            | 111        | 2000–2013         | NR                        | 92%       | 18         | 48      |
| Current study | 74         | 1998-2016         | 4                         | 68%       | 6.1        | 19.3    |



# Selinexor: First in Class Oral XPO inhibitor

▶ Penta exposed, triple class refractory

ECr Cl > 20, ANC > 1,000, plts > 75k (50k if marrow > 50% PC)

Selinexor 80 mg + Dex 20 mg} both po D1, 3 q week

N=122\* 65 (40-86) Age, years median (range) 6.6 (1.1–23.4) Time from diagnosis, years median (range) 65 (53%) High risk: (del17p, t(4;14), t(14;16), 1q21) Median prior regimens (range) 7 (3–18) Refractory to PI/IMiD/Dara/GC 122 (100%) **117 (96%)** 102 (84%) · Refractory to K/P/D · Stem cell transplant 29 (28%) 32 (26%)  $- \geq 2$  Transplants • Intensive combination chemo (eg, DT-PACE) • CAR T-cell therapy 2 (2%)

▶ORR 26.2%, including 2 sCRs

- PRs in both CAR T patients
- ≥MR 39.3%
- ≥SD 79%

► Median time to response 1 month

▶ Median PFS 3.7 months

### ► Median OS 8.0 months

|                  | Grade 3/4 | All Grades |
|------------------|-----------|------------|
| Nausea           | 10%       | 67%        |
| Anorexia         | 2%        | 50%        |
| Vomiting         | 3.3%      | 35%        |
| Fatigue/asthenia | 21%       | 68%        |
| Hyponatremia     | 16%       | 31%        |
| Thrombocytopenia | 53%       | 67%        |
| Neutropenia      | 18%       | 36%        |

Jagannath S et al. Presented at Society of Oncologic Hematology 6th Annual Meeting; September 2018. Chari A et al. *Blood*. 2018;132: Abstract 598. Presentation Monday, December 3 at 7:45 AM.

# Selinexor and Backbone Treatments of Myeloma Patients (STOMP): Phase 1 Preliminary Results

- ► The RP2D for selinexor in combination studies is likely weekly 100 mg (with PIs) and 60 mg (with IMIDs)
- ▶ Efficacy encouraging in combination setting, including in backbone refractory patients

| Stomp Patient Characteristics | SRd   | SPd      | SDara d | SVd     | SKd     |
|-------------------------------|-------|----------|---------|---------|---------|
|                               | 60 mg | 60 mg    | 100 mg  | 100 mg  | 100 mg  |
| Patients enrolled             | 19    | 34       | 21      | 42      | 21      |
| Median time dx to rx, years   | 4     | 6        | 5       | 5       | 4.5     |
| Median prior regimens         | 1     | 4        | 3       | 3       | 4       |
| Overall response rate         | NR    | 50%*     | 74%     | 84%     | 63%     |
| Progression-free survival     | NR    | 10.3 mos | NR      | 9.2 mos | 3.7 mos |
| *N=30 evaluable               |       |          |         |         |         |

Lonial S et al. Presented at National Comprehensive Cancer Network 23rd Annual Conference; March 2018, Poster 100; White DJ et al. *Blood*. 2017;130: Abstract 1861.; Bahils NJ et al. *Blood*. 2018; Oct 23 [Epub ahead of print]; Chen C et al. *Blood*. 2018;132: Abstract 1993. Gasparetto CJ et al. *Blood*. 2018;132: Abstract 599. Presentation Monday, December 3 at 8:00 AM; Jakubowiak A et al. *Blood*. 2016;128: Abstract 973.









| The Annual of the Bernograp                                                           | hics and Base                                           | line Characteristics                                                                               |
|---------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                       |                                                         |                                                                                                    |
| Characteristic                                                                        | Part 2 (N=35)                                           |                                                                                                    |
| Age (years), median (min, max)                                                        | 60 (46–75)                                              |                                                                                                    |
| Females/males, %                                                                      | 51/49                                                   |                                                                                                    |
| ≥5 prior lines, n (%)                                                                 | 18 (51)                                                 |                                                                                                    |
| ASCT                                                                                  | 31 (89)                                                 |                                                                                                    |
| IMiDs, n (%)<br>Lenalidomide<br>Pomalidomide<br>Thalidomide<br>Refractory to IMiD     | <b>35 (100)</b><br>33 (94)<br>22 (63)<br><b>33 (94)</b> |                                                                                                    |
| PI, n (%)<br>Bortezomib<br>Carfilzomib<br>Refractory to PI, n (%)                     | <b>35 (100)</b><br>34 (97)<br>29 (83)<br><b>34 (97)</b> |                                                                                                    |
| Daratumumab, n (%)<br>Refractory to daratumumab, n (%)                                | 14 (40)<br>14 (40)                                      | *Patients with any of the followin<br>genetic abnormalities were<br>considered high risk: t(4:14). |
| Refractory to IMiD/PI, n (%)                                                          | 31 (89)                                                 | del17, t(14:16), t(14:20),                                                                         |
| Refractory to IMiD/PI and prior daratumumab, n (%)                                    | 13 (37)                                                 | nonhiperdiploidy, or gain 1q                                                                       |
| Cytogenetics risk, n (%)*<br>High risk<br>Other (non high risk, not done, or missing) | 10 (29)                                                 |                                                                                                    |









| Engaging     | g Drug | s Under   | Investigation in I       | Multiple M  |
|--------------|--------|-----------|--------------------------|-------------|
| Name         | Target | Structure | Company                  | Trial ID    |
| AMG-420      | BCMA   | BITE      | Amgen                    | NCT02514239 |
| AMG-701      | BCMA   | BITE-HLE  | Amgen                    | NCT03287908 |
| CC-93269     | BCMA   | BITE      | Celgene                  | NCT03486067 |
| PF-06863135  | BCMA   | BITE      | Pfizer                   | NCT03269136 |
| REGN-5458    | BCMA   | BITE      | Regeneron                | NCT03761108 |
| TNB-383B     | BCMA   | UniAbs    | Teneobio                 | NCT03933735 |
| JNJ-64007957 | BCMA   | DuoBody   | Johnson & Johnson/Genmab | NCT03145181 |
| JNJ-64007564 | GPRC5d | DuoBody   | Johnson & Johnson/Genmab | NCT03399799 |
| GBR-1342     | CD38   | XmAb      | Glenmark                 | NCT03309111 |
| AMG-424      | CD38   | BITE      | Amgen                    | NCT03445663 |
| BFCR4350A    | FCRH5  | BITE      | Genetech                 | NCT03275103 |







| Parameter                                                       | E        | scalation<br>(N=21)   | Expans<br>(N=12 | ion<br>)          |
|-----------------------------------------------------------------|----------|-----------------------|-----------------|-------------------|
| Median (min, max) follow-up, d                                  | 34:      | 5 (46, 638)           | 87 (29, 1       | 84)               |
| Median (min, max) age, y                                        | 5        | 7 (37, 74)            | 64 (46,         | 75)               |
| Men, n (%)                                                      |          | 13 (62)               | 8 (67           | )                 |
| Median (min, max) time since diagnosis, y                       |          | 4 (1, 16)             | 6 (1, 3         | 6)                |
| ECOG PS,ª n (%)<br>0<br>1                                       |          | 8 (38)<br>11 (52)     | 2 (17<br>10 (83 | )<br>3)           |
| High-risk cytogenetics, n (%)<br>del(17p), t(4;14), t(14;16)    |          | 8 (38)                | 7 (58           | )                 |
| Median (min, max) prior regimens<br>Prior autologous SCT, n (%) |          | 7 (3, 14)<br>21 (100) |                 | (3. 23)<br>1 (92) |
|                                                                 | Exposed  | Refractory            | Exposed         | Refractory        |
| Bort/Len                                                        | 21 (100) | 14 (67)               | 22 (100)        | 14 (64)           |
| Bort/Len/Car/Pom/Dara                                           | 15 (71)  | 6 (29)                | 21 (96)         | 7 (32)            |



| Table 3. Tumor Response According to Dose of Chimeric Antigen Receptor–Positive (CAR+) T Cells.* |                                             |                                            |                                     |                         |                                                                                        |                                                                        |                                                                       |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------|-------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Variable                                                                                         | 50×10 <sup>6</sup><br>CAR+ T Cells<br>(N=3) | 150×10 <sup>6</sup><br>CAR+ Tells<br>(N=8) | 450×10 <sup>6</sup><br>CAR+ T Cells |                         | 150×10 <sup>6</sup><br>800×10 <sup>6</sup><br>800×10<br>CAR+ T Cells<br>(N=3)<br>(N=30 | 150×10 <sup>6</sup> -<br>800×10 <sup>6</sup><br>CAR+ T Cells<br>(N=30) | 50×10 <sup>6</sup> -<br>800×10 <sup>6</sup><br>CAR+ T Cells<br>(N=33) |  |
|                                                                                                  |                                             |                                            | <50%<br>BCMA<br>(N=8)†              | ≥50%<br>BCMA<br>(N=11)† |                                                                                        |                                                                        |                                                                       |  |
| Objective response:                                                                              |                                             |                                            |                                     |                         |                                                                                        |                                                                        |                                                                       |  |
| No. of patients with a response                                                                  | 1                                           | 6                                          | 8                                   | 10                      | 3                                                                                      | 27                                                                     | 28                                                                    |  |
| Rate — % (95% CI)                                                                                | 33<br>(1-91)                                | 75<br>(35–97)                              | 100<br>(63–100)                     | 91<br>(59–100)          | 100<br>(29–100)                                                                        | 90<br>(74–98)                                                          | 85<br>(68–95)                                                         |  |
| Best overall response — no. (%)                                                                  |                                             |                                            |                                     |                         |                                                                                        |                                                                        |                                                                       |  |
| Stringent complete response                                                                      | 0                                           | 5 (63)                                     | 3 (38)                              | 4 (36)                  | 0                                                                                      | 12 (40)                                                                | 12 (36)                                                               |  |
| Complete response                                                                                | 0                                           | 0                                          | 0                                   | 1 (9)                   | 2 (67)                                                                                 | 3 (10)                                                                 | 3 (9)                                                                 |  |
| Very good partial response                                                                       | 0                                           | 0                                          | 4 (50)                              | 4 (36)                  | 1 (33)                                                                                 | 9 (30)                                                                 | 9 (27)                                                                |  |
| Partial response                                                                                 | 1 (33)                                      | 1 (12)                                     | 1 (12)                              | 1 (9)                   | 0                                                                                      | 3 (10)                                                                 | 4 (12)                                                                |  |
| Stable disease                                                                                   | 2 (67)                                      | 1 (12)                                     | 0                                   | 1 (9)                   | 0                                                                                      | 2 (7)                                                                  | 4 (12)                                                                |  |
| Progressive disease                                                                              | 0                                           | 1 (12)                                     | 0                                   | 0                       | 0                                                                                      | 1 (3)                                                                  | 1 (3)                                                                 |  |
| Median duration of response (95% CI)<br>— mo                                                     | 1.9<br>(NE–NE)                              | NE                                         | 7<br>(5.3–                          | .7<br>-14.8)            | 12.9<br>(10.9–12.9)                                                                    | 10.9<br>(7.2–NE)                                                       | 10.9<br>(7.2–NE)                                                      |  |
| Negativity for MRD§                                                                              |                                             |                                            |                                     |                         |                                                                                        |                                                                        |                                                                       |  |
| No. of patients with a response who<br>could be evaluated for MRD                                | 0                                           | 4                                          | 1                                   | .1                      | 1                                                                                      | 16                                                                     | 16                                                                    |  |
| Rate — %                                                                                         | 0                                           | 100                                        | 10                                  | 00                      | 100                                                                                    | 100                                                                    | 100                                                                   |  |

Raje, et al. N Engl J Med 2019; 380:1726-1737.



# BCMA-Directed CAR T Cells in Multiple Myeloma

|                            | NCI1     | PENN2    | BB2121<br>BLUEBIRD3 | LCAR-B38M<br>LEGEND4 | MCARH171<br>MSK/JUNO5 |
|----------------------------|----------|----------|---------------------|----------------------|-----------------------|
| Population                 | 26 (16*) | 24 (19*) | 21 (18*)            | 35 (30*)             | 6                     |
| # Prior Tx                 | 10       | 7        | 7                   | 3-4                  | 7.5                   |
| Efficacy                   |          |          |                     |                      |                       |
| ORR                        | 81%*     | 53%*     | 94%*                | 100%                 | NR                    |
| CR                         | 18%      |          | 56%                 | 63% (sCR)            | NR                    |
| Toxicity                   |          |          |                     |                      |                       |
| CRS                        | 81%      | 83%      | 71%                 | 83%                  | 50%                   |
| CRS (Gr 3/4)               | 37%      | 33%      | 10%                 | 5.7%                 | None                  |
| Neurotoxicity (all grades) | 19%      | 25%      | 24%                 | None                 | None                  |

\*Responses at therapeutic CAR T dose levels

1. Ali SA et al. Blood. 2016;128:1688.2. Cohen AD et al. Blood. 2017;130: Abstract 505. 3. Berdeja JG et al. 2017;130: Abstract 740. 4. Zhang W et al. Haematologica. 2017;102: Abstract S103. 5. Smith EL et al. Blood. 2017;130: Abstract 742.

65

### Pros/Cons of Anti BCMA Therapies **CAR** T **ADC** BITE Unprecedented response rates including MRD negativity Off the shelf • Off the shelf Pros in heavily pre-treated patients Deep responses • Encouraging response rates One-time intervention ie long chemo holiday resulting in Limited severe CRS - ? elderly • 1-hour infusion every 3 weeks median PFS ~1 year Can be given in community No CRS settings Can be given in community settings Manufacturing time makes impractical for patients with e ? admissions with initial doses Ocular toxicity – will require Openation Until CRS fisk low aggressive disease/patient selection Until CRS fisk low Requires complex infrastructure – stem cell lab, nursing, No data in Limited data in triple class/penta refractory close collaboration with ophthalmology and ? impact on class/penta refractoryDosing/schedule to be quality of life centers Thrombocytopenia CRS - ? role in elderly/frail determined Treatment until progression Impact of bridging chemo on remission duration Treatment until progression Limited data in triple Toxicities require further study – class/penta refractory Cost given relapses are occurring even in MRD neg Low white cells and platelets post CAR T requiring neuropathy ongoing/frequent monitoring and treatment Management of CAR T relapses challenging especially if soon after fludarabine given impact on T cells



# **Conclusions: Relapsed Disease**

### First Relapse:

- ▶ Response rate and PFS progressively diminish with each relapse
- ▶ 3-drug therapy results in superior efficacy
- Select evidence-based regimen based on refractoriness to backbone control arms (lenalidomide vs bortezomib vs in near future daratumumab!)
- ▶ At attainment of persistent deep response ? de-escalate to 2 or 1 drugs
- ➢ High-risk disease remains unmet medical need with novel therapies typically only improving (or worsening –venetoclax) outcomes but not overcoming high risk

### Nth Relapse: as above but combination therapy even more important

- ▶ If significant/fast progression, then consider 96-hr based chemo regimen
- ▶ If cytopenic due to disease, consider 96-hr based chemo regimen vs salvage SCT
- Selinexor (combination studies promising)
- ▶ Anti BCMA therapies- Antibody drug conjugate, T-cell engagers, CAR T





### LLS EDUCATION & SUPPORT RESOURCES





### LLS Podcast, The Bloodline with LLS

Listen in as experts and patients guide listeners in understanding diagnosis, treatment, and resources available to blood cancer patients: <u>www.thebloodline.org</u>

### Education Videos

Free education videos about survivorship, treatment, disease updates and other topics: www.LLS.org/educationvideos

Patti Robinson Kaufmann First Connection Program

Peer-to-peer program that matches newly diagnosed patients and their families: www.LLS.org/firstconnection

### Free Nutrition Consults

Telephone and email consultations with a Registered Dietitian: www.LLS.org/nutrition

What to Ask

Questions to ask the treatment team: www.LLS.org/whattoask

Other Support Resources

LLS Community, discussion boards, blogs, support groups, financial assistance and more: <a href="http://www.LLS.org/support">www.LLS.org/support</a>

71

