

DISCLOSURES

Advances in CAR T-cell Therapy

Iris Isufi, MD, has affiliations with Astra Zeneca, Celgene, Kite Pharmaceuticals and Novartis (Consultant).

BEATING CANCER IS IN OUR BLOOD.

Objectives

- Why CAR T-cell (chimeric antigen receptor T-cell) therapy shows promise for blood cancers
- Approved and emerging CAR T-cell therapies
- Side effects of CAR T-cell therapy: what to expect
- The future of CAR T-cell therapy for blood cancer patients

Multiple Mechanisms of Modulating Immune System to Treat Cancer

- Monoclonal antibodies or antibody drug conjugates
- Dual antigen retargeting proteins
- Immune checkpoint antibodies
- Chimeric antigen receptor T cells

Engineered T cell

CD3

CD3

PD1

Immune checkpoir inhibitors

CD19

MHC I/II PD-11

PD-12

Naked mAb

CD20

CD20

CD20

CD20

CD22

Nature Reviews | Clinical Oncology

Batlevi, C. L. et al, Nat. Rev. Clin. Oncol, 2015

What is CAR T-cell therapy?

CAR T-cell therapy is a type of cancer therapy that uses a patient's own modified white blood cells to kill cancer

cells.

CAR T-Cells are at The Intersection of Three Innovative Technologies

Cellular therapy

Using the patient's own T- cells as therapy

Gene therapy

Insertion of genes into a patient's cells, thereby causing these cells to produce a new therapeutic protein (CAR)

Immunotherapy

Harnessing the patient's own immune system (T- cells) to treat his/her disease

Tragedy, Perseverance, and Chance — The Story of CAR-T Therapy

The emergence of CAR-T therapy, like most scientific advances, reflects the incremental insights of hundreds of scientists over decades. Indeed, the story of CAR-T therapy says as much about the methodical nature of scientific progress as it does about the passions that sustain it.

Lisa Rosenbaum, M.D.

N Engl J Med 377;14 nejm.org October 5, 2017

From Manufacturing of CAR T-Cells to Infusion

Ideal CAR Target

- Tumor specific antigen (Ag)
 - Required for tumor pathogenicity (ability to cause disease)
 - Critical for survival, such that loss of that Ag comes at really high cost for the cancer
- Highly expressed on all tumor cells (cancer stem cells?)
 - Cell surface molecule
- Absent from normal tissue (or where normal tissue is dispensable)
- Absent from T cells (to avoid self killing)

11

CD19 as a Target of B-Cell Malignancies

CD19 expression is generally restricted to B cells and B-cell precursors and, importantly, is expressed by most B-cell malignancies, and represents a rational target for therapy

Selected Approved or Late-Stage CAR T Therapies

Drug name	Company	Indication	Target			
	Marketed					
Tisagenlecleucel (CTL-019)	Novartis	Childhood B-cell ALL (≤25) Adult DLBCL, transformed FL (tFL)	CD19			
Axicabtagene ciloleucel (KTE-C19)	Gilead Sciences (Kite Pharma)	DLBCL, tFL and PMBCL	CD19			
Brexucabtagene autoleucel (KTE-X19)	Gilead Sciences (Kite Pharma)					
	Phase I	II				
Lisocabtagene maraleucel (JCAR 017)	Celgene (Juno Therapeutics)	B-NHL	CD19			
Idecabtagene vicleucel (bb2121)	Bluebird bio/Celgene	Multiple myeloma	ВСМА			

15

CAR T- Cell Therapy in B-Cell Acute Lymphoblastic Leukemia (B-ALL)

Atlas of Genetics and Cytogenetics in Oncology and Hematology

Pediatric Relapsed/Refractory (R/R) B-ALL: ELIANA Study Design

 ELIANA (NCT02435849) is a phase 2, open-label, single-arm study in pediatric and young adult patients with r/r B-cell ALL¹⁻²

B-cell ALL, B cell acute lymphoblastic leukemia.

*To be completed 2 to 14 days prior to Tisagenlecleucel infusion.

1. Buechner J, et al. Haematologica. 2017;102(suppl 2) [abstract S476];

2. Maude SL, et al. N Engl J Med. 2018;378:439-448;

ELIANA Study in B-ALL

- Single arm, open-label, multi-center, global phase 2 study
 - 107 pts screened, 88 enrolled, 68 treated
- Dose of Tisagenlecleucel: 2-5 x 10^6 CAR-T cells/kg
 - Conditioning chemo: Flu 30 mg/m2 x 4days + Cy 500 mg/m2 x 2 days
- Response rates: Complete Remission/Complete Remission with incomplete hematologic recovery **CR/CRi: 81%** (CR 60% + CRi 21%)
- Tisagenlecleucel approved for treatment of patients up to age
 with B-ALL that is refractory or in 2nd or later relapse
- 1. Buechner J, et al. Haematologica. 2017;102(suppl 2) [abstract S476];
- 2. Maude SL, et al. N Engl J Med. 2018;378:439-448;

ELIANA: Patient Demographics and Baseline Clinical Characteristics

Characteristics	Patients (N = 75)
Age, median (range), years	11 (3-23)
Prior stem cell transplant, n (%)	46 (61)
Previous line of therapies, median (range), n	3 (1-8)
Disease status, n (%)	
Primary refractory	6 (8)
Chemo-refractory or relapsed	69 (92)
Morphologic blast count in bone marrow, median (range), %	74 (5-99)

ELIANA: Overall safety of Tisagenlecleucel

Event	Any Time (N = 75)	≤8 Wk after Infusion (N = 75) number of patients (per	>8 Wk to 1 Yr after Infusion (N = 70)
Adverse event of any grade	75 (100)	74 (99)	65 (93)
Suspected to be related to tisagenlecleucel	71 (95)	69 (92)	30 (43)
Grade 3 or 4 adverse event	66 (88)	62 (83)	31 (44)
Suspected to be related to tisagenlecleucel	55 (73)	52 (69)	12 (17)

Maude SL, et al. N Engl J Med. 2018;378:439-448

Outcomes with CART19 Therapy in Children and Adults with Relapsed/Refractory B-ALL

Reference	CAR	Population	Response
Maude et al. NEJM 2018	PENN 4-1BB	ALL (peds/adults) N=71	CR: 81% 6mo EFS & OS: 73% & 90% 12mo EFS & OS: 59% & 76% 11% proceeded to alloHSCT after CAR T cells
Park J et al. ASCO 2017, Abstract 7008	MSKCC CD28	ALL (adults) N=53	CR: 84.6% MRD-CR rate: 66.6% 39% proceeded to alloHSCT after CAR T cells.
Turtle et al. JCI 2016	Seattle 4-1BB Defined CD4/CD8 composition	ALL (adults) N=30	CR=93% MRD-CR rate: 86% 1 pt proceeded to alloHSCT after CAR T cells
Lee et al. Lancet 2015	NCI CD28	ALL (peds/adults) N=21	CR=67%

CAR-T 19 Associated Toxicities

- Cytokine Release syndrome (CRS)
 - · Fevers, flu-like syndrome, low blood pressure, difficulty breathing
- Neurologic changes (NT, CRES, ICANS)
 - Headaches, tremors, mental status changes, difficulty speaking, rarely seizures (normal MRI)
- Organ toxicity (liver, kidneys)
- Off tumor/On target: B cell aplasia
 - Prolonged; Cases requiring IVIG repletion
- Toxicities are usually manageable and reversible

25

Mechanism of Cytokine Release Syndrome (CRS)

Shimabukuro-Vornhagen, A., Gödel, P., Subklewe, M. et al. Cytokine release syndrome. *j. immunotherapy cancer* **6**, 56 (2018)

Inhibitory Action of Tocilizumab in IL-6 Signaling

Norihiro Nishimoto, Toru Mima, in Rheumatoid Arthritis, 2009

27

Neurologic Toxicity with CAR T-Cells

- Symptoms and signs: headaches, tremors, somnolence, speech difficulty, confusion, paralysis of limbs, rarely seizures, etc.
 - 1st phase (Days 0-5) symptoms may appear with other CRS symptoms
 - 2nd phase (After day 5) starts after CRS symptoms have subsided
- Neurotoxicity typically lasts 2-4 days but may vary in duration from few hours to few weeks. It is generally reversible.
 - Corticosteroids treatment of choice in managing neurotoxicity.
 - Seizure prophylaxis is recommended with levetiracetam (750 mg oral/IV q 12 hrs) from day 0 to day 30.

Neelapu, SS, et al. Nature Reviews Clinical Oncology, 15(1), 47-62.

Mechanism of Neurotoxicity

- Pathophysiology remains unclear:
 - · Diffusion of cytokines into central nervous system
 - Trafficking of T cells into central nervous system
- CSF is usually positive for CAR T cells
- · MRI of brain is usually negative
 - · Reversible white matter changes and cerebral edema have been rarely observed
- EEG is either non-focal with generalized slowing or might show non-convulsive seizure pattern

Maude et al. NEJM 2014; Davila et al. SciTrMed 2014; Lee et al. The Lancet 2015; Turtle et al. JCI 2016; Kochenderfer et al. JCO 2015; Turtle et al. JCI 2016; Gust et al. Cancer Disc. 2017

Tools for Grading Neurotoxicity

Encephalopathy Assessment Tools for Grading of ICANS

CARTOX-10 [12]	ICE
Orientation: orientation to year, month, city, hospital, president/prime minister of country of residence: 5 points	Orientation: orientation to year, month, city, hospital: 4 points
	• Naming: ability to name 3 objects (eg, point to clock, pen, button): 3 points
Naming: ability to name 3 objects (eg, point to clock, pen,	
button): 3 points	 Following commands: ability to follow simple commands (eg, "Show me 2 fingers" or "Close your eyes and stick out your tongue"): 1 point
Writing: ability to write a standard sentence (eg, "Our national	
bird is the bald eagle"): 1 point	 Writing: ability to write a standard sentence (eg, "Our national bird is the bald eagle"): 1 point
Attention: ability to count backwards from 100 by 10: 1 point	
	• Attention: ability to count backwards from 100 by 10: 1 point

CARTOX-10 (left column) has been updated to the ICE tool (right column). ICE adds a command-following assessment in place of 1 of the CARTOX-10 orientation questions. The scoring system remains the same.

Scoring: 10, no impairment;

7-9, grade 1 ICANS;

3-6, grade 2 ICANS;

0 due to patient unarousable and unable to perform ICE assessment, grade 4 ICANS.

Lee DW, et al. (2018, December 19). ASBMT Consensus Grading for Cytokine Release Syndrome and Neurological Toxicity Associated with Immune Effector Cells. Biology of Blood and Marrow Transplantation. doi: https://doi.org/10.1016/j.bbmt.2018.12.758

Treatment of Aggressive DLBCL

- 1. First Line: Chemotherapy (R-CHOP or R-EPOCH) + Anti-CD20 monoclonal antibody (Rituximab)
- 2. Common 2nd line regimens if disease comes back: R-ICE, R-DHAP, R-GemOx*

*These regimens may induce remission but response is generally shortlived due to lymphoma stem cells that are resistant to "standard doses" of chemotherapy

3. Autologous stem cell transplant (ASCT)

33

Autologous Stem Cell Transplant (ASCT)

- If a patient's lymphoma goes into remission with 2nd line treatment, ASCT is used to **maintain** the remission.
- During 2nd line treatment, a patient's healthy bloodproducing cells are obtained and frozen.
- After completing 2nd line chemotherapy, patient receives a "high dose chemotherapy" regimen, followed by infusion of their own healthy blood-producing cells.

-This helps prevent toxicity of the "high dose chemotherapy."

Autologous Stem Cell Transplant

- Must be in remission
- Stem cells derived from patient
- High dose chemotherapy
- Stem cell infusion
- •Bone marrow recovers in 1.5-3 weeks
- •Adverse effects in ~ 3-7%

3

Treatment Challenges

- What if lymphoma comes back after an autologous stem cell transplant?
- What if lymphoma will not go into remission in order to proceed to an autologous stem cell transplant?

Three Large Multicenter CAR T Studies for DLBCL

- Zuma-1 (Kite/Gilead) Axicabtagene Ciloleucel -> First FDA approval October 2017
 - Treatment of adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma (PMBCL), high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma (transformed follicular lymphoma, or tFL).
- Juliet (Novartis) Tisagenlecleucel -> FDA approval May 2018
 - Treatment of adult patients with relapsed or refractory (r/r) large B-cell lymphoma after two or more lines of systemic therapy including diffuse large B-cell lymphoma (DLBCL), high grade B-cell lymphoma and DLBCL arising from follicular lymphoma.
- Transcend NHL 001 (Juno/Celgene) Lisocabtagene maraleucel

Neelapu SS, et al. N Engl J Med. Volume 377(26):2531-2544. December 28, 2017 Schuster et al. N Engl J Med. Volume 377(26):2545-2554. December 28, 2017 Abramson, Palomba et al. ICML 2017

37

Three Major Anti-CD19 CAR T-cell Products for Lymphoid Malignancies

	Axicabtagene Ciloleucel- ZUMA-1	Tisagenlecleucel JULIET	Lisocabtagene Maraleucel TRANSCEND NHL- 001
Construct	antiCD19-CD28-CD3z	antiCD19- 41BB -CD3z	antiCD19- 41BB -CD3z
T-cell Manufacturing	Retroviral vector Bulk T-cells	Lentiviral Vector Bulk T-cells	Lentiviral Vector CD4:CD8 1:1 ratio
Dose	2 x 10 ⁶ /kg (max 2 x 10 ⁸)	0.6 to 6.0 x 10 ⁸	DL1: 0.5 x 10 ⁷ , DL2: 1.0 x 10 ⁸
Bridging Therapy	None allowed in pivotal trial but often used in standard practice	93%	72%
Lymphodepletion	Flu/Cy 500/30 x 3d	Flu/Cy 250/25 x 3d, or BR	Flu/Cy 300/30 x 3d
Treatment Locale	Inpatient Only	Inpatient and Outpatient*	Inpatient and Outpatient*
Approval Status	FDA approved for DLBCL, high- grade B-cell lymphoma, transformed FL, primary mediastinal B-cell lymphoma	FDA approved for pediatric ALL, DLBCL, high-grade B-cell lymphoma, transformed FL	Not yet FDA approved

^{*} Outpatient therapy requires careful patient selection and is center dependent based on outpatient resources

^{1.} Schuster SJ, et al. NEJM 2018; 2. Neelapu SS, et al. NEJM 2017; 3. Abramson JS, et al. ASCO 2019

CART 19 Therapy Outcomes in R/R LBCL

	Zuma-1 (Axicabtagene Ciloleucel)	Juliet (Tisagenlecleucel)	Transcend NHL 001 (Lisocabtagene Maraleucel)
Pts leukapheresed, n	111, 108 infused	141, 111 infused	102, 70 infused
Histologies	Cohort 1: DLBCL Cohort 2: PMBCL, tFL	DLBCL/tFL	DLBCL, PMBCL, tFL, FL3b (CORE) TMZL, MCL, Richter's
Efficacy in R/R DLBCL			
Best OOR	42%	52%	73%
Best CRR	40%	40%	53%
6 month CRR	40%	30%	33% R/R DLBCL DL1, 46% DL2
12-mo PFS		83% in CR/PR pts at 3mo	

1. Schuster SJ, et al. NEJM 2018; 2. Neelapu SS, et al. NEJM 2017; 3. Abramson JS, et al. ASCO 2019

Why Doesn't CAR T-Cell Therapy Always Work?

- Leukemia relapse after CAR T-cells could be classified into 2 distinct types:
 - Loss of the CD19 target antigen on the surface of leukemia cells
 - Loss of CD19 CAR T-cells in blood (short persistence)

- 1. Grupp et al NEJM 2013; 2. Sotillo E, et al. Cancer Discov. 2015; 3. Jacoby E, et al. Nat Commun. 2016; 4. Turtle et al. JCl 2016
- 5. Nathan Singh N et al. Seminars in Cancer Biology, Volume 65,2020, Pages 91-98

Strategies to Avoid Antigen-Loss Relapses

Single CART – CAR T cells of same specificity (i.e. CD19)

Pooled CART – 1:1 mixture of single–specificity CART: each cell remains able to recognize only one target (i.e. one with specificity for CD19, and one with specificity for CD22) Dual (or bi-) CART – every T cell bears 2 distinct CAR structures able to recognize 2 different targets (i.e. one for CD19 and one for CD22)

Tandem CART – every T cell bears 1 CAR structure where 2 scFvs are built in series and are able to recognize 2 different targets

Marco Ruella, Marcela Maus. Computational and Structural Biotechnology Journal. 2016; (14):357-362

Why "humanize" CARs?

- 1. Immune rejection loss of CAR cells (pedi- and adult B-ALL)
- 2. Superior efficacy? durability of response
- 3. Humanized CAR-T can rescue ~ 50% kids with B-ALL previously treated with murine CAR-T and relapsed (Shannon Maude, ASH 2017)

Number of trials utilizing humanized/fully human CAR constructs (binding domain/signaling domain. Data source: CellTrials.org

Autologous CAR-T Cells vs Allogeneic CAR-T Cells

Patient Derived Limitations

- Cost
- Harvest and Manufacturing Failures
- Product Variability and Quality Control
- Disease Progression During Manufacture
- Contamination with Tumor cells
- Cancer Associated T-cell Dysfunction

Graham C, et al. Cells 2018, 7, 155

Donor derived

- Previous HSCT donor
- Virus-specific CAR-T cells
- Gene-edited healthy donor CAR-T cells

Donor Derived Advantages

- Easier and cost-effective manufacturing
- Reduced time to CAR-T infusion
- Potential to treat all eligible patients on demand within days, no need for bridging
- Increase probability of healthy CAR-T cell generation
- Convenience of repeat dosing

Donor Derived Barriers

- Graft Versus Host
 Disease (gene editing
 techniques do not reach
 100% knockout)
- Rejection of CAR-T Cells (less persistence)
- Off Target Cleavage with Gene Editing

What's Else is Exciting in LBCL CAR-T?

Trial	Phase	Treatment	Population
TRANSFORM (NCT03575351)	III	Lisocabtagene maraleucel vs SoC	Transplant-eligible R/R aggressive B-cell NHL
BELINDA (NCT03568461)	III	Tisagenlecleucel vs SoC	R/R aggressive B-cell NHL
ZUMA-12 (NCT03761056)	П	Axicabtagene ciloleucel	High-risk large B-cell lymphoma; no prior treatment (1st line)
TRANSCEND- PILOT (NCT03483103)	П	Lisocabtagene maraleucel	R/R aggressive B-cell NHL after first-line immunochemotherapy, ineligible for ASCT
MB-CART2019.1 (NCT03870945)	ı	Bispecific tandem CAR T construct against CD19 and CD20	R/R B-NHL without curative treatment option, or in 2 nd line, non-transplant eligible DLBCL patients
ALEXANDER (NCT03287817)	ı	AUTO3, the first CD19/22 dual targeting with pembrolizumab	R/R DLBCL
ALPHA (NCT03939026)		ALLO-501 and ALLO-647 anti CD19	R/R large B-cell or follicular lymphoma

49

CAR T-Cell Therapy in B-Cell Non-Hodgkin Lymphoma (NHL)

- Diffuse Large B-Cell Lymphoma (DLBCL)
- Mantle Cell Lymphoma (MCL)
- Follicular Lymphoma
- Marginal Zone Lymphoma

Source: Estella Matutes, Barbara J Bain, Andrew Wotherspoon Lymphoid Malignancies: An Atlas of Investigation and Diagnosis Conviolit © Evidence Based Nativerse Ltd.

Peripheral blood film in mantle cell lymphoma showing pleomorphic cells

Phase II ZUMA-2 Trial of KTE-X19 CAR T-Cell Therapy in Relapsed/Refractory Mantle Cell Lymphoma (MCL)

- Mantle cell lymphoma is an uncommon, aggressive B-cell NHL subtype with hallmark chromosomal translocation t(11;14)(q13;q32)
- KTE-X19: autologous CD19-targeted CAR T-cell therapy comprising a CD3ζ T-cell activation domain and a costimulatory CD28 domain
- The phase II ZUMA-2 study sought to evaluate efficacy and safety of KTE-X19 in patients with relapsed/refractory MCL
- First CAR T-cell therapy, brexucabtagene autoleucel, FDA approved in 2020 for treatment of adults with R/R MCL

1. Martin. Blood. 2016;127:1559. 2. Jain. Br J Haematol. 2018;183:578. 3. Epperla. Hematol Oncol. 2017;35:528. 4. Sabatino. Blood. 2016;128:1227. 5. Wang. ASH 2019. Abstr 754.

51

ZUMA-2: Study Design

· Multicenter, global phase II trial

Patients with relapsed/refractory mantle cell lymphoma; 1-5 prior therapies; ≥ 1 measurable lesion; ECOG PS 0-1 (N = 74)

Optional Bridging Therapy

Dexamethasone 20-40 mg/d x 1-4 d, or Ibrutinib 560 mg/d, or Acalabrutinib 100 mg BID (n = 25) Conditioning Chemotherapy

Fludarabine 30 mg/m² + Cyclophosphamide 500 mg/m² Days -5, -4, -3 (n = 69) CAR T-Cells

KTE-X19

2 x 10⁶ cells/kg, Day 0

(n = 68)

Primary endpoint: ORR (IRRC-assessed per Lugano classification)

Secondary endpoints: DoR, PFS, OS, safety, ORR (investigator assessed), QoL (EQ-5D), CAR T-cell levels in blood and cytokines in serum

required to confirm CR

F/U begins with first tumor assessment on

Day 28: BM biopsy may be

- KTE-X19 was successfully manufactured in 96% of patients and administered to 92% of patients
- Median time from leukapheresis to KTE-X19 delivery was 16 days

Wang. ASH 2019. Abstr 754.

Slide credit: clinicaloptions.com

ZUMA-2: Baseline Characteristics

Characteristic	N = 68
Median age, yrs (range)	65 (38-79)
■ ≥ 65 yrs, n (%)	39 (57)
Male, n (%)	57 (84)
Stage IV, n (%)	58 (85)
ECOG PS 0-1, n (%)	68 (100)
Int/high-risk MIPI, n (%)	38 (56)
Ki-67 index ≥ 50%, n/N (%)	34/49 (69)
TP53 mutation, n/N (%)	6/36 (17)
Bone marrow involvement, n (%)	37 (54)
Extranodal disease, n (%)	38 (56)
MCL morphology, n (%)	
Classical	40 (59)
Pleomorphic	4 (6)
Blastoid	17 (25)

Wang. ASH 2019. Abstr 754.

53

CAR T-Cell Therapy in B-Cell Non-Hodgkin Lymphoma (NHL)

- Diffuse Large B-Cell Lymphoma (DLBCL)
- Mantle Cell Lymphoma (MCL)
- Follicular Lymphoma
- Marginal Zone Lymphoma

ASH Image Bank – American Society of Hematology

UPenn CAR-T-cells (CTL019) in R/R CD19+ B-Cell NHLs

• Single-center trial at University of Pennsylvania; CTL019 construct: α-CD19-4-1BB-CD3ζ

Primary endpoint: ORR at 3 mos

Secondary endpoints: PFS, RD, OS

Schuster. NEJM. 2017;377:2545. NCT02030834

Slide credit: clinicaloptions.com

UPenn CTL019 in Follicular Lymphoma: 4-Yr Follow-up Best ORR: 78%; CR, 71% (10/14); PR, 7% (1/14) Characteristic FL Median PFS: 32 mos (95% CI: 3.5-NE); Enrolled, N 16 60% progression free at 49 mos **OS**: 64% alive at 49 mos Infused, n 14 Median age, yrs (range) 59 (43-72) **Response Duration** Female, n (%) 9 (64) 60% in remission at 49 mos 100 Median RD not reached (95% CI: 9.5-NE) Prior Rx, median n (range) 5 (2-10) 75 Advanced stage, n (%) 14 (88) 50 ECOG PS, median (range) 0 (0-1) Prior HCT, n (%) 4 (25) 25 12 mos post CTL019 Bridging therapy, n (%) 10 (71) 0 20 40 60 Mos Patients at Risk, n Chong. ICML 2019. Abstr 090. Slide credit: clinicaloptions.com

Feasibility and efficacy of JCAR014 CD19-targeted CAR T cells with concurrent ibrutinib* for CLL after ibrutinib failure

Patient Characteristics (n=36)	Ibr Cohort (n=17)	No-Ibr Cohort (n=19)	P value
Number of prior therapies	5 (4,7)	5 (4,6)	0.55
Prior progression on Ibrutinib	16 (94%)	18 (95%)	1.00
CRS None Any grade CRS grade 0-2 CRS grade 3-5	4 (24%) 13 (76%) 17 (100%) 0 (0%)	2 (11%) 17 (89%) 14 (74%) 5 (26%)	0.39 0.39 0.05 0.05
Neurotoxicity None Any Grade	12 (71%) 5 (29%)	11 (58%) 8 (42%)	0.50 0.50
OR at 4 wks 2008 iwCLL	14 (88%)	10 (56%)	0.06
Nodal response at 4 wks CR/PR	10 (83%)	10 (59%)	0.23

^{*} Ibrutinib was scheduled to begin ≥2 weeks before leukapheresis and continue for ≥3 months after CAR T-cell infusion.

Gauthier et al., Blood, 2018

CAR-T and Ibrutinib in CLL: Sequential or simultaneous?

- CD19 CAR T-cell therapy with concurrent ibrutinib is well tolerated.
- The 4-week ORR using 2018 International Workshop on CLL (iwCLL) criteria is higher with Ibrutinib combination, and more patients achieve a minimal residual disease (MRD)-negative marrow response by IGH sequencing.
- The 1-year overall survival and progression-free survival (PFS) probabilities are higher higher with Ibrutinib combination.
- Compared with CLL patients treated with CAR T cells without ibrutinib, CAR T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in vivo CAR T-cell expansion.

61

CAR T- Cell Therapy in Multiple Myeloma (MM)

Clinician Reviews. 2018 January;28(1):16-18,20-21

B-cell Maturation Antigen (BCMA)

- Functions to maintain long-lived plasma cell homeostasis
 - Essential in regulating B-cell maturation and differentiation
- Highly expressed on malignant plasma cells in MM
 - Increased expression associated with progression of disease
- BCMA shed from the surface of plasma cells leads to soluble BCMA (sBCMA) detectable in circulation
- Higher concentrations of sBCMA associated with poorer outcomes
 - Low level expression on healthy differentiated B-cells; no other normal cells/tissues express BCMA

Phase I NCI BCMA CAR

- Single-center, open-label phase I trial in patients with R/R MM, N=16
- CD28 costimulatory domain, gamma-retroviral vector, dose levels: 0.3, 1, 3, and 9 ×106 CAR T-cells/kg
- Lymphodepletion: Flu 30 mg/m2 and Cy 300 mg/m2 daily on days -5 to -3

Baseline Characteristics		Results		Adverse Events and Management	
Median lines of prior therapy	9.5	PR or better	13 (81%)	Grade 3-4 CRS	6 (37.5%)
High risk cytogenetics	40%	Median EFS	31 weeks	Tocilizumab	5 (31%)
Del(17p)	33%	DoR >1 year	5 (31%)	Tocilizumab + steroids	4 (25%)
Refractory to last treatment	63%	DoR > 6 months	9 (56%)		

Brudno JN, et al. J Clin Oncol. 2018;36:2267–80.

65

Phase I Data: BCMA-Directed CAR T Cells in Multiple Myeloma

	BB2121 (BLUEBIRD) Idecabtagene vicleucel	LCAR-B38M (LEGEND)	JCARH125 (JUNO)
Population	33	57	44
# Prior Tx	7	3	7
CART Dose	50-800 x 106	0.07-2.1 x 106/kg	50-450 x 106
ORR	85%	88%	82%
CR	45%	74%	27%
CRS All Grades (Grade 3/4)	76% (6%)	89% (7%)	80% (9%)
Med Onset of CRS	2d	9d	3d
Neurotox All Grades (Grade 3/4)	42% (3%)	2% (0%)	25% (7%)
Med PFS	11.8 months	15 months	-

Raje et al, NEJM 2019; Zhao et al, ASH 2018, Mailankody et al, ASH 2018.

Future Directions of Most Advanced CAR T Products in Multiple Myeloma

- Race to FDA Approval in the USA
 - Global Pivotal Trial (KarMMa) of Idecabtagene vicleucel just completed enrollment
 - Legend/Janssen enrolling on pivotal trial of LCAR-B38M or JNJ-68284528
- Use Beyond the Refractory Setting
 - Trials in earlier phase of disease
 - KarMMa 3 randomized Phase 3 of bb2121 vs SOC in pts with 2-4 priors
 - KarMMa 2 cohort of pts with early relapse 9 (with or without ASCT), bb2121 as
 - Trials in conjunction with ASCT/Consolidation in MRD

•KarMMa2 – Cohort 2C upfront in pts with inadequate response to ASCT

- Dual antigen targeting to mitigate Ag escape
 - UPenn/Novartis (BCMA CART with or without CART19) [NCT03549442]
 in pts responding to 1st or 2nd line therapy for high-risk MM

Investigational Allogeneic CAR T-cells in Hematologic Malignancies

Trial	Phase	Planned N	Primary Endpoints	Treatment
NCT02746952 (CALM)	I	30	DLT, Safety	UCART19, anti-CD19 allogeneic CAR T-cell in adult R/R ALL
NCT02808442 (PALL)	I	18	Safety	UCART19, anti-CD19 allogeneic CAR T-cell in pediatric R/R ALL
NCT03939026 (ALPHA)	I/II	24	DLT, ORR	ALLO-501, anti-CD19 allogeneic CAR T-cell in R/R LBCL or FL
NCT03190278 (AMELI-01)	I	59	DLT, Safety	UCART123, anti-CD123 allogeneic CAR T-cell in R/R AML
NCT04093596 (UNIVERSAL)	I	90	DLT	ALLO-715, anti-BCMA allogeneic CAR T-cell in R/R MM
NCT04142619 (MELANI-01)	I	18	Safety	UCARTCS1A, anti-CS1 allogeneic CAR T-cell in R/R MM
NCT03971799	1/11	34	DLT, ORR	CD33CART, anti-CD33 allogeneic CAR T-cell in R/R AML

www.clinicaltrials.gov. Accessed December 12, 2020

DLT: Dose limiting toxicity

Conclusions

- CD19 CAR T-cells are the most successful and best known CAR therapy providing durable responses in pediatric/young adult B-cell ALL, adult LBCL and MCL
- Unique toxicities of CRS and neurotoxicity may occur
 - Strategies for uniform grading to be used across clinical trials and the postapproval clinical setting recently published
- Clinical trials evaluating the use of CAR T-cells alone or in combination with other agents, in other malignancies, and versus standard of care therapies are ongoing
- Allogeneic CAR T-cell therapy may overcome barriers to current FDA approved products

69

Q&A SESSION

Advances in CAR T-cell Therapy

- Ask a question by phone:
 - Press star (*) then the number 1 on your keypad.
- Ask a question by web:
 - Click "Ask a question"
 - Type your question
 - Click "Submit"

Due to time constraints, we can only take one question per person. Once you've asked your question, the operator will transfer you back into the audience line.

BEATING CANCER IS IN OUR BLOOD.

LLS EDUCATION & SUPPORT RESOURCES

HOW TO CONTACT US:

To contact an Information Specialist about disease, treatment and support information, resources and clinical trials:

Call: (800) 955-4572

Monday to Friday, 9 a.m. to 9 p.m. ET

Monday to Friday, 10 a.m. to 7 p.m. ET

Email: infocenter@LLS.org

All email messages are answered within one business

CLINICAL TRIAL SUPPORT CENTER

Work one-on-one with an LLS Clinical Trial Nurse Navigator who will help you find clinical trials and personally assist you throughout the entire clinical-trial process.

www.LLS.org/Navigation

BEATING CANCER IS IN OUR BLOOD.

NUTRITION CONSULTATIONS

Our registered dietitian has expertise in oncology nutrition and provides free one-on-one consultations by phone or email.

www.LLS.org/Consult.

LLS EDUCATION & SUPPORT RESOURCES

Online Chats

Online Chats are free, live sessions, moderated by oncology social workers. To register for one of the chats below, or for more information, please visit www.LLS.org/Chat.

Augmented Reality CAR T-Cell Therapy Process

Use your smartphone, tablet, or other mobile device to see the CAR T-cell therapy process in action, please visit www.LLS.org/CART.

Patient Podcast

The Bloodline with LLS is here to remind you that after a diagnosis comes hope. To listen to an episode, please visit www.TheBloodline.org.

