ADVANCES IN CAR T-CELL THERAPY

Iris Isufi, MD
Co-Director, Adult CAR T-Cell Therapy Program
Yale Cancer Center/Smilow Cancer Hospital
Assistant Professor, Medicine
Yale University School of Medicine
New Haven, CT

DISCLOSURES
Advances in CAR T-cell Therapy

Iris Isufi, MD, has affiliations with Astra Zeneca, Celgene, Kite Pharmaceuticals and Novartis (Consultant).
Objectives

• Why CAR T-cell (chimeric antigen receptor T-cell) therapy shows promise for blood cancers
• Approved and emerging CAR T-cell therapies
• Side effects of CAR T-cell therapy: what to expect
• The future of CAR T-cell therapy for blood cancer patients

Multiple Mechanisms of Modulating Immune System to Treat Cancer

• Monoclonal antibodies or antibody drug conjugates
• Dual antigen re-targeting proteins
• Immune checkpoint antibodies
• Chimeric antigen receptor T cells

What is CAR T-cell therapy?

CAR T-cell therapy is a type of cancer therapy that uses a patient’s own modified white blood cells to kill cancer cells.

CAR T-Cells are at The Intersection of Three Innovative Technologies

Cellular therapy
Using the patient's own T-cells as therapy

Gene therapy
Insertion of genes into a patient's cells, thereby causing these cells to produce a new therapeutic protein (CAR)

Immunotherapy
Harnessing the patient's own immune system (T-cells) to treat his/her disease
Tragedy, Perseverance, and Chance — The Story of CAR-T Therapy

The emergence of CAR-T therapy, like most scientific advances, reflects the incremental insights of hundreds of scientists over decades. Indeed, the story of CAR-T therapy says as much about the methodical nature of scientific progress as it does about the passions that sustain it.

Lisa Rosenbaum, M.D.

N Engl J Med 377;14 nejm.org October 5, 2017

From Manufacturing of CAR T-Cells to Infusion
Structure of T-Cell Receptors and CAR Modified T-cells

CAR T Cells Traffic to Tumor and Proliferate Extensively after Infusion

Ideal CAR Target

• Tumor specific antigen (Ag)
 • Required for tumor pathogenicity (ability to cause disease)
 • Critical for survival, such that loss of that Ag comes at really high cost for the cancer
• Highy expressed on all tumor cells (cancer stem cells?)
 • Cell surface molecule
• Absent from normal tissue (or where normal tissue is dispensable)
• Absent from T cells (to avoid self killing)

CD19 as a Target of B-Cell Malignancies

CD19 expression is generally restricted to B cells and B-cell precursors and, importantly, is expressed by most B-cell malignancies, and represents a rational target for therapy
Evolution in CAR Design

First-generation CAR
- mAB scFv
- TM domain
- Hinge
- CD3ζ or FCRγ
- One co-stimulatory domain (CD28, 4-1BB, OX-40)

Second-generation CAR
- TM domain
- Hinge
- CD3ζ or FCRγ
- Two co-stimulatory domains (CD28, 4-1BB, OX-40)

Third-generation CAR

Data source: CellTrials.org

Total Registered CAR-T Trials Worldwide

- Industry is Taking Over CAR T-Cell Development

Data source: CellTrials.org
Selected Approved or Late-Stage CAR T Therapies

<table>
<thead>
<tr>
<th>Drug name</th>
<th>Company</th>
<th>Indication</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tisagenlecleucel (CTL-019)</td>
<td>Novartis</td>
<td>Childhood B-cell ALL (≤25)</td>
<td>CD19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adult DLBCL, transformed FL (tFL)</td>
<td></td>
</tr>
<tr>
<td>Axicabtagene ciloleucel</td>
<td>Gilead Sciences (Kite Pharma)</td>
<td>DLBCL, tFL and PMBCL</td>
<td>CD19</td>
</tr>
<tr>
<td>(KTE-C19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brexucabtagene autoleucel</td>
<td>Gilead Sciences (Kite Pharma)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(KTE-X19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lisocabtagene maraleucel</td>
<td>Celgene (Juno Therapeutics)</td>
<td>B-NHL</td>
<td>CD19</td>
</tr>
<tr>
<td>(JCAR 017)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idecabtagene vicleucel</td>
<td>Bluebird bio/Celgene</td>
<td>Multiple myeloma</td>
<td>BCMA</td>
</tr>
<tr>
<td>(bb2121)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase III

- Lisocabtagene maraleucel (JCAR 017)
- Idecabtagene vicleucel (bb2121)

CAR T- Cell Therapy in B-Cell Acute Lymphoblastic Leukemia (B-ALL)

[Image of CAR T-cell therapy]
Pediatric Relapsed/Refractory (R/R) B-ALL: ELIANA Study Design

- ELIANA (NCT02435849) is a phase 2, open-label, single-arm study in pediatric and young adult patients with r/r B-cell ALL\(^1\)\(^-\)\(^2\)

<table>
<thead>
<tr>
<th>Pretreatment phase</th>
<th>Pretreatment phase</th>
<th>Pretreatment phase</th>
<th>Pretreatment phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening phase</td>
<td>Screening phase</td>
<td>Screening phase</td>
<td>Screening phase</td>
</tr>
<tr>
<td>Apheresis and</td>
<td>Tisagenlecleucel</td>
<td>Enrollment</td>
<td>Tisagenlecleucel</td>
</tr>
<tr>
<td>cryopreservation</td>
<td>manufacturing</td>
<td>Tisagenlecleucel</td>
<td>manufacturing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>infusion</td>
<td>infusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*To be completed 2 to 14 days prior to Tisagenlecleucel infusion.

ELIANA Study in B-ALL

- Single arm, open-label, multi-center, global phase 2 study
 - 107 pts screened, 88 enrolled, 68 treated
- Dose of Tisagenlecleucel: 2-5 x 10^6 CAR-T cells/kg
 - Conditioning chemo: Flu 30 mg/m2 x 4 days + Cy 500 mg/m2 x 2 days
- Response rates: Complete Remission/Complete Remission with incomplete hematologic recovery **CR/CRi: 81%** (CR 60% + CRi 21%)
- **Tisagenlecleucel approved for treatment of patients up to age 25 with B-ALL that is refractory or in 2\(^{nd}\) or later relapse**

ELIANA: Patient Demographics and Baseline Clinical Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients (N = 75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range), years</td>
<td>11 (3-23)</td>
</tr>
<tr>
<td>Prior stem cell transplant, n (%)</td>
<td>46 (61)</td>
</tr>
<tr>
<td>Previous line of therapies, median (range), n</td>
<td>3 (1-8)</td>
</tr>
<tr>
<td>Disease status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Primary refractory</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Chemo-refractory or relapsed</td>
<td>69 (92)</td>
</tr>
<tr>
<td>Morphologic blast count in bone marrow, median (range), %</td>
<td>74 (5-99)</td>
</tr>
</tbody>
</table>

Duration of Remission: ELIANA

Relapse-Free Survival

6-month RFS\(^a\)
75% (95% CI, 57-87)
9- and 12- month RFS\(^a\)
64% (95% CI, 42-87)

Patients (N = 52) Number of events (n = 11) Median follow-up, 4.8 mo
Median DOR, not reached
Overall Survival: ELIANA

![Graph showing overall survival](image)

- 6-month OS: 89% (95% CI, 77-94)
- 9- and 12-month OS: 79% (95% CI, 63-89)

Patients (N = 68)

Number of events (n = 11)

Median follow-up, 6.2 mo

Median OS, 16.6 mo

*Bueschner J, *EHA* 2017, Abstract S476*

ELIANA: Overall safety of Tisagenlecleucel

<table>
<thead>
<tr>
<th>Event</th>
<th>Any Time (N = 75)</th>
<th>≤8 Wk after Infusion (N = 75)</th>
<th>>8 Wk to 1 Yr after Infusion (N = 70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse event of any grade</td>
<td>75 (100)</td>
<td>74 (99)</td>
<td>65 (93)</td>
</tr>
<tr>
<td>Suspected to be related to tisagenlecleucel</td>
<td>71 (95)</td>
<td>69 (92)</td>
<td>30 (43)</td>
</tr>
<tr>
<td>Grade 3 or 4 adverse event</td>
<td>66 (88)</td>
<td>62 (83)</td>
<td>31 (44)</td>
</tr>
<tr>
<td>Suspected to be related to tisagenlecleucel</td>
<td>55 (73)</td>
<td>52 (69)</td>
<td>12 (17)</td>
</tr>
</tbody>
</table>

Outcomes with CART19 Therapy in Children and Adults with Relapsed/Refractory B-ALL

<table>
<thead>
<tr>
<th>Reference</th>
<th>CAR</th>
<th>Population</th>
<th>Response</th>
</tr>
</thead>
</table>
| Maude et al. NEJM 2018 | PENN 4-1BB| ALL (peds/adults) N=71 | CR: 81%
6mo EFS & OS: 73% & 90%
12mo EFS & OS: 59% & 76%
n11% proceeded to alloHSCT after CAR T cells |
| Park J et al. ASCO 2017, Abstract 7008 | MSKCC CD28 | ALL (adults) N=53 | CR: 84.6%
MRD-CR rate: 66.6%
39% proceeded to alloHSCT after CAR T cells. |
| Turtle et al. JCI 2016 | Seattle 4-1BB Defined CD4/CD8 composition | ALL (adults) N=30 | CR: 93%
MRD-CR rate: 86%
1 pt proceeded to alloHSCT after CAR T cells |
| Lee et al. Lancet 2015 | NCI CD28 | ALL (peds/adults) N=21 | CR: 67% |

CAR-T 19 Associated Toxicities

Professional illustration by Patrick Lane, ScYEEnce Studios
CAR-T 19 Associated Toxicities

- Cytokine Release syndrome (CRS)
 - Fevers, flu-like syndrome, low blood pressure, difficulty breathing

- Neurologic changes (NT, CRES, ICANS)
 - Headaches, tremors, mental status changes, difficulty speaking, rarely seizures (normal MRI)

- Organ toxicity (liver, kidneys)

- Off tumor/On target: B cell aplasia
 - Prolonged; Cases requiring IVIG repletion

- Toxicities are usually manageable and reversible

Mechanism of Cytokine Release Syndrome (CRS)

Neurologic Toxicity with CAR T-Cells

- Symptoms and signs: headaches, tremors, somnolence, speech difficulty, confusion, paralysis of limbs, rarely seizures, etc.
 - 1st phase (Days 0-5) – symptoms may appear with other CRS symptoms
 - 2nd phase (After day 5) – starts after CRS symptoms have subsided
- Neurotoxicity typically lasts 2-4 days but may vary in duration from few hours to few weeks. \textit{It is generally reversible.}
 - Corticosteroids treatment of choice in managing neurotoxicity.
 - Seizure prophylaxis is recommended with levetiracetam (750 mg oral/IV q 12 hrs) from day 0 to day 30.
Mechanism of Neurotoxicity

- Pathophysiology remains unclear:
 - Diffusion of cytokines into central nervous system
 - Trafficking of T cells into central nervous system
- CSF is usually positive for CAR T cells
- MRI of brain is usually negative
 - Reversible white matter changes and cerebral edema have been rarely observed
- EEG is either non-focal with generalized slowing or might show non-convulsive seizure pattern

Tools for Grading Neurotoxicity

<table>
<thead>
<tr>
<th>Encephalopathy Assessment Tools for Grading of ICANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARTOX-10</td>
</tr>
<tr>
<td>Orientation: orientation to year, month, city, hospital, president/prime minister of country of residence:</td>
</tr>
<tr>
<td>5 points</td>
</tr>
<tr>
<td>Naming: ability to name 3 objects (eg, point to clock, pen,</td>
</tr>
<tr>
<td>button): 3 points</td>
</tr>
<tr>
<td>Writing: ability to write a standard sentence (eg, “Our national bird is the bald eagle”): 1 point</td>
</tr>
<tr>
<td>Attention: ability to count backwards from 100 by 10: 1 point</td>
</tr>
</tbody>
</table>

CARTOX-10 (left column) has been updated to the ICE tool (right column). ICE adds a command-following assessment in place of 1 of the CARTOX-10 orientation questions. The scoring system remains the same.

Scoring: 10, no impairment;
7-9, grade 1 ICANS;
3-6, grade 2 ICANS;
0-2, grade 3 ICANS;
0 due to patient unarousable and unable to perform ICE assessment, grade 4 ICANS.

B-Cell Aplasia Following CAR-T

- All patients with a response to treatment had B-cell aplasia.
- The median time to B-cell recovery was not reached.
- The probability of maintenance of B-cell aplasia at 6 months after infusion was 83% (95% CI, 69 to 91).

CAR T-Cell Therapy in B-Cell Non-Hodgkin Lymphoma (NHL)

- Diffuse Large B-Cell Lymphoma (DLBCL)
- Mantle Cell Lymphoma (MCL)
- Follicular Lymphoma
- Marginal Zone Lymphoma

Relative Incidence of the Most Prevalent NHL Subtypes in the United States

T-cell lymphomas constitute < 15% of all NHL cases.
Treatment of Aggressive DLBCL

1. First Line: Chemotherapy (R-CHOP or R-EPOCH) + Anti-CD20 monoclonal antibody (Rituximab)

2. Common 2nd line regimens if disease comes back: R-ICE, R-DHAP, R-GemOx*

 *These regimens may induce remission but response is generally short-lived due to lymphoma stem cells that are resistant to “standard doses” of chemotherapy

3. Autologous stem cell transplant (ASCT)

Autologous Stem Cell Transplant (ASCT)

- If a patient’s lymphoma goes into remission with 2nd line treatment, ASCT is used to maintain the remission.
- During 2nd line treatment, a patient’s healthy blood-producing cells are obtained and frozen.
- After completing 2nd line chemotherapy, patient receives a “high dose chemotherapy” regimen, followed by infusion of their own healthy blood-producing cells.
 - This helps prevent toxicity of the “high dose chemotherapy.”
Autologous Stem Cell Transplant

• Must be in remission
• Stem cells derived from patient
• High dose chemotherapy
• Stem cell infusion
• Bone marrow recovers in 1.5-3 weeks
• Adverse effects in ~ 3-7%

Treatment Challenges

• What if lymphoma comes back after an autologous stem cell transplant?
• What if lymphoma will not go into remission in order to proceed to an autologous stem cell transplant?
Three Large Multicenter CAR T Studies for DLBCL

- **Zuma-1 (Kite/Gilead) Axicabtagene Ciloleucel** -> First FDA approval October 2017
 - Treatment of adult patients with [*relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy*, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma (PMBC), high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma (transformed follicular lymphoma, or tFL)].

- **Juliet (Novartis) Tisagenlecleucel** -> FDA approval May 2018
 - Treatment of adult patients with [*relapsed or refractory (r/r) large B-cell lymphoma after two or more lines of systemic therapy* including diffuse large B-cell lymphoma (DLBCL), high grade B-cell lymphoma and DLBCL arising from follicular lymphoma.]

- **Transcend NHL 001 (Juno/Celgene) Lisocabtagene maraleucel**

Three Major Anti-CD19 CAR T-cell Products for Lymphoid Malignancies

<table>
<thead>
<tr>
<th>Construct</th>
<th>Axicabtagene Ciloleucel ZUMA-1</th>
<th>Tisagenlecleucel JULIET</th>
<th>Lisocabtagene Maraleucel TRANSCEND NHL-001</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-cell Manufacturing</td>
<td>Retroviral vector Bulk T-cells</td>
<td>Lentiviral Vector Bulk T-cells</td>
<td>Lentiviral Vector CD4/CD8 1:1 ratio</td>
</tr>
<tr>
<td>Dose</td>
<td>2×10^9/kg (max 2×10^9)</td>
<td>$0.6 \text{ to } 6.0 \times 10^9$</td>
<td>DL1: 0.5×10^9, DL2: 1.0×10^9</td>
</tr>
<tr>
<td>Bridging Therapy</td>
<td>None allowed in pivotal trial but often used in standard practice</td>
<td>93%</td>
<td>72%</td>
</tr>
<tr>
<td>Lymphodepletion</td>
<td>Flu/Cy 500/30 x 3d</td>
<td>Flu/Cy 250/25 x 3d, or BR</td>
<td>Flu/Cy 300/30 x 3d</td>
</tr>
<tr>
<td>Treatment Locale</td>
<td>Inpatient Only</td>
<td>Inpatient and Outpatient*</td>
<td>Inpatient and Outpatient*</td>
</tr>
<tr>
<td>Approval Status</td>
<td>FDA approved for DLBCL, high-grade B-cell lymphoma, transformed FL, primary mediastinal B-cell lymphoma</td>
<td>FDA approved for pediatric ALL, DLBCL, high-grade B-cell lymphoma, transformed FL</td>
<td>Not yet FDA approved</td>
</tr>
</tbody>
</table>

* Outpatient therapy requires careful patient selection and is center dependent based on outpatient resources

CART 19 Therapy Outcomes in R/R LBCL

<table>
<thead>
<tr>
<th></th>
<th>Zuma-1 (Axicabtagene Ciloleucel)</th>
<th>Juliet (Tisagenlecleucel)</th>
<th>Transcend NHL 001 (Lisocabtagene Maraleucel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pts leukapheresed, n</td>
<td>111, 108 infused</td>
<td>141, 111 infused</td>
<td>102, 70 infused</td>
</tr>
<tr>
<td>Histologies</td>
<td>Cohort 1: DLBCL</td>
<td>DLBCL/tFL</td>
<td>DLBCL, PMBCL, tFL, FL3b (CORE)</td>
</tr>
<tr>
<td></td>
<td>Cohort 2: PMBCL, tFL</td>
<td></td>
<td>TMZL, MCL, Richter’s</td>
</tr>
<tr>
<td>Efficacy in R/R DLBCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best OOR</td>
<td>42%</td>
<td>52%</td>
<td>73%</td>
</tr>
<tr>
<td>Best CRR</td>
<td>40%</td>
<td>40%</td>
<td>53%</td>
</tr>
<tr>
<td>6 month CRR</td>
<td>40%</td>
<td>30%</td>
<td>33%</td>
</tr>
<tr>
<td>12-mo PFS</td>
<td></td>
<td>83% in CR/PR pts at 3mo</td>
<td></td>
</tr>
</tbody>
</table>

Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory LBCL

Kaplan–Meier Estimates of the Duration of Response, Progression-free Survival, and Overall Survival.

Tisagenlecleucel in Adult Relapsed or Refractory DLBCL

A Overview of Response

- Duration of Response, Progression-free Survival, and Overall Survival

B Progression-free Survival

- Median Follow-up: 12.0 mos (95% CI: 11.2-16.7)

- Probability of Continued Response (%)
 - Median: NR (95% CI: NR-NR)
 - Median: NR (95% CI: 8.6 mos -NR)
 - Median: 1.9 mos (95% CI: 1.1-2.1)

C Progression-free Survival among Patients with a Response

- CR
- PR
- Total

D Overall Survival

Lisocabtagene Maraleucel in Adult R/R LBCL

Efficacy-Evaluable Patients (N = 256)

- ORR (95% CI): 73 (67-78)
- CR rate (95% CI): 53 (47-59)
- Time to first CR or PR, median mos (range): 1.0 (0.7-8.9)
- DoR at 6 mos, % (95% CI): 60.4 (52.6-67.3)
- DoR at 12 mos, % (95% CI): 54.7 (46.7-62.0)

Median Follow-up: 12.0 mos (95% CI: 11.2-16.7)

Medians:
- NR (95% CI: NR-NR)
- NR (95% CI: 8.6 mos -NR)
- 1.9 mos (95% CI: 1.1-2.1)

Why Doesn’t CAR T-Cell Therapy Always Work?

- Leukemia relapse after CAR T-cells could be classified into 2 distinct types:
 - Loss of the CD19 target antigen on the surface of leukemia cells
 - Loss of CD19 CAR T-cells in blood (short persistence)

Strategies to Avoid Antigen-Loss Relapses

- **Single CART** — CAR T cells of same specificity (i.e. CD19)
- **Pooled CART** — 1:1 mixture of single–specificity CART: each cell remains able to recognize only one target (i.e. one with specificity for CD19, and one with specificity for CD22)
- **Dual (or bi-) CART** — every T cell bears 2 distinct CAR structures able to recognize 2 different targets (i.e. one for CD19 and one for CD22)
- **Tandem CART** — every T cell bears 1 CAR structure where 2 scFvs are built in series and are able to recognize 2 different targets

Evolution of CAR Design

- Programmable system: universal receptor expressed on T cells and a tumor-targeting scFv adaptor molecule
- Targets multiple tumor antigens using different zipFvs
- SUPRA CARs can be finely regulated via multiple mechanisms to limit overactivation
- Variables manipulated: (1) the affinity between leucine zipper pairs, (2) the affinity between tumor antigen and scFv, (3) the concentration of zipFv, and (4) the expression level of zipCAR
- Effect on IFN-γ production by primary CD4+ T cells expressing RR zipCAR

Why “humanize” CARs?

1. Immune rejection – loss of CAR cells (pedi- and adult B-ALL)
2. Superior efficacy? durability of response
3. Humanized CAR-T can rescue ~ 50% kids with B-ALL previously treated with murine CAR-T and relapsed (Shannon Maude, ASH 2017)

Number of trials utilizing humanized/fully human CAR constructs (binding domain/signaling domain. Data source: CellTrials.org)

Autologous CAR-T Cells vs Allogeneic CAR-T Cells

Patient Derived Limitations
- Cost
- Harvest and Manufacturing Failures
- Product Variability and Quality Control
- Disease Progression During Manufacture
- Contamination with Tumor cells
- Cancer Associated T-cell Dysfunction

Donor derived
- Previous HSCT donor
- Virus-specific CAR-T cells
- Gene-edited healthy donor CAR-T cells

Donor Derived Advantages
- Easier and cost-effective manufacturing
- Reduced time to CAR-T infusion
- Potential to treat all eligible patients on demand within days, no need for bridging
- Increase probability of healthy CAR-T cell generation
- Convenience of repeat dosing

Donor Derived Barriers
- Graft Versus Host Disease (gene editing techniques do not reach 100% knockout)
- Rejection of CAR-T Cells (less persistence)
- Off Target Cleavage with Gene Editing

What’s Else is Exciting in LBCL CAR-T?

<table>
<thead>
<tr>
<th>Trial</th>
<th>Phase</th>
<th>Treatment</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFORM (NCT03575351)</td>
<td>III</td>
<td>Lisocabtagene maraleucel vs SoC</td>
<td>Transplant-eligible R/R aggressive B-cell NHL</td>
</tr>
<tr>
<td>BELINDA (NCT03568461)</td>
<td>III</td>
<td>Tisagenlecleucel vs SoC</td>
<td>R/R aggressive B-cell NHL</td>
</tr>
<tr>
<td>ZUMA-12 (NCT03761056)</td>
<td>II</td>
<td>Axicabtagene ciloleucel</td>
<td>High-risk large B-cell lymphoma; no prior treatment (1st line)</td>
</tr>
<tr>
<td>TRANSCEND-PILOT (NCT03483103)</td>
<td>II</td>
<td>Lisocabtagene maraleucel</td>
<td>R/R aggressive B-cell NHL after first-line immunochemotherapy, ineligible for ASCT</td>
</tr>
<tr>
<td>MB-CART2019.1 (NCT03870945)</td>
<td>I</td>
<td>Bispecific tandem CAR T construct against CD19 and CD20</td>
<td>R/R B-NHL without curative treatment option, or in 2nd line, non-transplant eligible DLBCL patients</td>
</tr>
<tr>
<td>ALEXANDER (NCT03287817)</td>
<td>I</td>
<td>AUTO3, the first CD19/22 dual targeting with pembrolizumab</td>
<td>R/R DLBCL</td>
</tr>
<tr>
<td>ALPHA (NCT03939026)</td>
<td></td>
<td>ALLO-501 and ALLO-647 anti CD19</td>
<td>R/R large B-cell or follicular lymphoma</td>
</tr>
</tbody>
</table>

CAR T-Cell Therapy in B-Cell Non-Hodgkin Lymphoma (NHL)

- **Diffuse Large B-Cell Lymphoma (DLBCL)**
- **Mantle Cell Lymphoma (MCL)**
- Follicular Lymphoma
- Marginal Zone Lymphoma

![Peripheral blood film in mantle cell lymphoma showing pleomorphic cells](image-url)
Phase II ZUMA-2 Trial of KTE-X19 CAR T-Cell Therapy in Relapsed/Refractory Mantle Cell Lymphoma (MCL)

- Mantle cell lymphoma is an uncommon, aggressive B-cell NHL subtype with hallmark chromosomal translocation t(11;14)(q13;q32)
- KTE-X19: autologous CD19-targeted CAR T-cell therapy comprising a CD3ζ T-cell activation domain and a costimulatory CD28 domain
- The phase II ZUMA-2 study sought to evaluate efficacy and safety of KTE-X19 in patients with relapsed/refractory MCL
- First CAR T-cell therapy, brexucabtagene autoleucel, FDA approved in 2020 for treatment of adults with R/R MCL

ZUMA-2: Study Design

- Multicenter, global phase II trial

<table>
<thead>
<tr>
<th>Patients with relapsed/refractory mantle cell lymphoma; 1-5 prior therapies; ≥ 1 measurable lesion; ECOG PS 0-1 (N = 74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Bridging Therapy</td>
</tr>
<tr>
<td>Dexamethasone 20-40 mg/d x 1-4 d, or Ibrutinib 560 mg/d, or Acalabrutinib 100 mg BID (n = 25)</td>
</tr>
<tr>
<td>Conditioning Chemotherapy</td>
</tr>
<tr>
<td>Fludarabine 30 mg/m² + Cyclophosphamide 500 mg/m² Days -5, -4, -3 (n = 69)</td>
</tr>
<tr>
<td>CAR T-Cells</td>
</tr>
<tr>
<td>KTE-X19 2 x 10⁶ cells/kg, Day 0 (n = 68)</td>
</tr>
</tbody>
</table>

Primary endpoint: ORR (IRRC-assessed per Lugano classification)
Secondary endpoints: DoR, PFS, OS, safety, ORR (investigator assessed), QoL (EQ-5D), CAR T-cell levels in blood and cytokines in serum

- KTE-X19 was successfully manufactured in 96% of patients and administered to 92% of patients
- Median time from leukapheresis to KTE-X19 delivery was 16 days

ZUMA-2: Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N = 68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, yrs (range)</td>
<td>65 (38-79)</td>
</tr>
<tr>
<td>≥ 65 yrs, n (%)</td>
<td>39 (57)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>57 (84)</td>
</tr>
<tr>
<td>Stage IV, n (%)</td>
<td>58 (85)</td>
</tr>
<tr>
<td>ECOG PS 0-1, n (%)</td>
<td>68 (100)</td>
</tr>
<tr>
<td>Int/high-risk MIPI, n (%)</td>
<td>38 (56)</td>
</tr>
<tr>
<td>Ki-67 index ≥ 50%, n/N (%)</td>
<td>34/49 (69)</td>
</tr>
<tr>
<td>TP53 mutation, n/N (%)</td>
<td>6/36 (17)</td>
</tr>
<tr>
<td>Bone marrow involvement, n (%)</td>
<td>37 (54)</td>
</tr>
<tr>
<td>Extranodal disease, n (%)</td>
<td>38 (56)</td>
</tr>
<tr>
<td>MCL morphology, n (%)</td>
<td></td>
</tr>
<tr>
<td>Classical</td>
<td>40 (59)</td>
</tr>
<tr>
<td>Pleomorphic</td>
<td>4 (6)</td>
</tr>
<tr>
<td>Blastoid</td>
<td>17 (25)</td>
</tr>
</tbody>
</table>

ZUMA-2: Objective Response, Duration of Response, Progression-free Survival, and Overall Survival

- ORR of 93% (CR: 67%)
- Median DoR: not reached (95% CI: 8.6-NE)
 - 57% of all responders and 78% of those with a CR remained in remission
- Median f/u for initial 28 patients treated: 27 mos (range: 25.3-32.3)
 - 43% remained in remission without additional treatment
- ORR consistent across subgroups

CAR T-Cell Therapy in B-Cell Non-Hodgkin Lymphoma (NHL)

- Diffuse Large B-Cell Lymphoma (DLBCL)
- Mantle Cell Lymphoma (MCL)
- Follicular Lymphoma
- Marginal Zone Lymphoma

UPenn CAR-T-cells (CTL019) in R/R CD19+ B-Cell NHLs

- Single-center trial at University of Pennsylvania; CTL019 construct: α-CD19-4-1BB-CD3ζ

CD19+ R/R DLBCL with no curative treatment options or R/R FL with PD < 2 yrs after 2nd therapy; prognosis < 2 yrs; < CR with previous therapy (N = 28)

- Primary endpoint: ORR at 3 mos
- Secondary endpoints: PFS, RD, OS

Schuster. NEJM. 2017;377:2545. NCT02030834

Slide credit: clinicaloptions.com
UPenn CTL019 in Follicular Lymphoma: 4-Yr Follow-up

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>FL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrolled, N</td>
<td>16</td>
</tr>
<tr>
<td>Infused, n</td>
<td>14</td>
</tr>
<tr>
<td>Median age, yrs (range)</td>
<td>59 (43-72)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>9 (64)</td>
</tr>
<tr>
<td>Prior Rx, median n (range)</td>
<td>5 (2-10)</td>
</tr>
<tr>
<td>Advanced stage, n (%)</td>
<td>14 (88)</td>
</tr>
<tr>
<td>ECOG PS, median (range)</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Prior HCT, n (%)</td>
<td>4 (25)</td>
</tr>
<tr>
<td>Bridging therapy, n (%)</td>
<td>10 (71)</td>
</tr>
</tbody>
</table>

- Best ORR: 78%; CR, 71% (10/14); PR, 7% (1/14)
- Median PFS: 32 mos (95% CI: 3.5-NE); 60% progression free at 49 mos
- OS: 64% alive at 49 mos

Response Duration

- 60% in remission at 49 mos
- Median RD not reached (95% CI: 9.5-NE)

12 mos post CTL019

Patients at Risk, n

- 11
- 8
- 6
- 0

CAR T-Cell Therapy in Chronic Lymphocytic Leukemia (CLL)

Increased numbers of mature lymphocytes in peripheral blood

Slide credit: clinicaloptions.com
Improving CLL Therapy with CAR T-cells

Feasibility and efficacy of JCAR014 CD19-targeted CAR T cells with concurrent ibrutinib* for CLL after ibrutinib failure

<table>
<thead>
<tr>
<th>Patient Characteristics (n=36)</th>
<th>Ibr Cohort (n=17)</th>
<th>No-Ibr Cohort (n=19)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of prior therapies</td>
<td>5 (4,7)</td>
<td>5 (4,6)</td>
<td>0.55</td>
</tr>
<tr>
<td>Prior progression on Ibrutinib</td>
<td>16 (94%)</td>
<td>18 (95%)</td>
<td>1.00</td>
</tr>
<tr>
<td>CRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>4 (24%)</td>
<td>2 (11%)</td>
<td>0.39</td>
</tr>
<tr>
<td>Any grade</td>
<td>13 (76%)</td>
<td>17 (89%)</td>
<td>0.39</td>
</tr>
<tr>
<td>CRS grade 0-2</td>
<td>17 (100%)</td>
<td>14 (74%)</td>
<td>0.05</td>
</tr>
<tr>
<td>CRS grade 3-5</td>
<td>0 (0%)</td>
<td>5 (26%)</td>
<td>0.05</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>12 (71%)</td>
<td>11 (58%)</td>
<td>0.50</td>
</tr>
<tr>
<td>Any Grade</td>
<td>5 (29%)</td>
<td>8 (42%)</td>
<td>0.50</td>
</tr>
<tr>
<td>OR at 4 wks 2008 iwCLL</td>
<td>14 (88%)</td>
<td>10 (56%)</td>
<td>0.06</td>
</tr>
<tr>
<td>Nodal response at 4 wks CR/PR</td>
<td>10 (83%)</td>
<td>10 (59%)</td>
<td>0.23</td>
</tr>
</tbody>
</table>

* Ibrutinib was scheduled to begin ≥2 weeks before leukapheresis and continue for ≥3 months after CAR T-cell infusion.

Gauthier et al., Blood, 2018
CAR-T and Ibrutinib in CLL: Sequential or simultaneous?

- CD19 CAR T-cell therapy with concurrent ibrutinib is well tolerated.
- The 4-week ORR using 2018 International Workshop on CLL (iwCLL) criteria is higher with Ibrutinib combination, and more patients achieve a minimal residual disease (MRD)-negative marrow response by IGH sequencing.
- The 1-year overall survival and progression-free survival (PFS) probabilities are higher higher with Ibrutinib combination.
- Compared with CLL patients treated with CAR T cells without ibrutinib, CAR T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in vivo CAR T-cell expansion.

CAR T- Cell Therapy in Multiple Myeloma (MM)

B-cell Maturation Antigen (BCMA)

- Functions to maintain long-lived plasma cell homeostasis
 - Essential in regulating B-cell maturation and differentiation
- Highly expressed on malignant plasma cells in MM
 - Increased expression associated with progression of disease
- BCMA shed from the surface of plasma cells leads to soluble BCMA (sBCMA) detectable in circulation
 - Higher concentrations of sBCMA associated with poorer outcomes
 - Low level expression on healthy differentiated B-cells; no other normal cells/tissues express BCMA

B-Cell Maturation Antigen (BCMA)-Based Immunotherapies

Phase I NCI BCMA CAR

- Single-center, open-label phase I trial in patients with R/R MM, N=16
- CD28 costimulatory domain, gamma-retroviral vector, dose levels: 0.3, 1, 3, and 9 ×10^6 CAR T-cells/kg
- Lymphodepletion: Flu 30 mg/m² and Cy 300 mg/m² daily on days −5 to −3

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>Results</th>
<th>Adverse Events and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median lines of prior therapy</td>
<td>9.5</td>
<td>PR or better</td>
</tr>
<tr>
<td>High risk cytogenetics</td>
<td>40%</td>
<td>Median EFS</td>
</tr>
<tr>
<td>Del(17p)</td>
<td>33%</td>
<td>DoR >1 year</td>
</tr>
<tr>
<td>Refractory to last treatment</td>
<td>63%</td>
<td>DoR > 6 months</td>
</tr>
</tbody>
</table>

Baseline Characteristics: Flu 30 mg/m² and Cy 300 mg/m² daily on days −5 to −3

Phase I Data: BCMA-Directed CAR T Cells in Multiple Myeloma

<table>
<thead>
<tr>
<th>BB2121 (BLUEBIRD) Idecagtagene vicleucel</th>
<th>LCAR-B38M (LEGEND)</th>
<th>JCARH125 (JUNO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>33</td>
<td>57</td>
</tr>
<tr>
<td># Prior Tx</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>CART Dose</td>
<td>50-800 x 106</td>
<td>0.07-2.1 x 106/kg</td>
</tr>
<tr>
<td>ORR</td>
<td>85%</td>
<td>88%</td>
</tr>
<tr>
<td>CR</td>
<td>45%</td>
<td>74%</td>
</tr>
<tr>
<td>CRS All Grades (Grade 3/4)</td>
<td>76% (6%)</td>
<td>89% (7%)</td>
</tr>
<tr>
<td>Med Onset of CRS</td>
<td>2d</td>
<td>9d</td>
</tr>
<tr>
<td>Neurotox All Grades (Grade 3/4)</td>
<td>42% (3%)</td>
<td>2% (0%)</td>
</tr>
<tr>
<td>Med PFS</td>
<td>11.8 months</td>
<td>15 months</td>
</tr>
</tbody>
</table>

Future Directions of Most Advanced CAR T Products in Multiple Myeloma

- Race to FDA Approval in the USA
 - Global Pivotal Trial (KarMMa) of Idecabtagene vicleucel just completed enrollment
 - Legend/Janssen enrolling on pivotal trial of LCAR-B38M or JNJ-68284528

- Use Beyond the Refractory Setting
 - Trials in earlier phase of disease
 - KarMMa 3 – randomized Phase 3 of bb2121 vs SOC in pts with 2-4 priors
 - KarMMa 2 – cohort of pts with early relapse 9 (with or without ASCT), bb2121 as 2nd line
 - Trials in conjunction with ASCT/Consolidation in MRD
 - KarMMa2 – Cohort 2C upfront in pts with inadequate response to ASCT
 - Dual antigen targeting to mitigate Ag escape
 - UPenn/Novartis (BCMA CART with or without CART19) [NCT03549442] – in pts responding to 1st or 2nd line therapy for high-risk MM

Investigational Allogeneic CAR T-cells in Hematologic Malignancies

<table>
<thead>
<tr>
<th>Trial</th>
<th>Phase</th>
<th>Planned N</th>
<th>Primary Endpoints</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02746952 (CALM)</td>
<td>I</td>
<td>30</td>
<td>DLT, Safety</td>
<td>UCART19, anti-CD19 allogeneic CAR T-cell in adult R/R ALL</td>
</tr>
<tr>
<td>NCT02808442 (PALL)</td>
<td>I</td>
<td>18</td>
<td>Safety</td>
<td>UCART19, anti-CD19 allogeneic CAR T-cell in pediatric R/R ALL</td>
</tr>
<tr>
<td>NCT03939026 (ALPHA)</td>
<td>I/II</td>
<td>24</td>
<td>DLT, ORR</td>
<td>ALLO-501, anti-CD19 allogeneic CAR T-cell in R/R LBCL or FL</td>
</tr>
<tr>
<td>NCT03190278 (AMELI-01)</td>
<td>I</td>
<td>59</td>
<td>DLT, Safety</td>
<td>UCART123, anti-CD123 allogeneic CAR T-cell in R/R AML</td>
</tr>
<tr>
<td>NCT04093596 (UNIVERSAL)</td>
<td>I</td>
<td>90</td>
<td>DLT</td>
<td>ALLO-715, anti-BCMA allogeneic CAR T-cell in R/R MM</td>
</tr>
<tr>
<td>NCT04142619 (MELANI-01)</td>
<td>I</td>
<td>18</td>
<td>Safety</td>
<td>UCARTCS1A, anti-CS1 allogeneic CAR T-cell in R/R MM</td>
</tr>
<tr>
<td>NCT03971799</td>
<td>I/II</td>
<td>34</td>
<td>DLT, ORR</td>
<td>CD33CART, anti-CD33 allogeneic CAR T-cell in R/R AML</td>
</tr>
</tbody>
</table>

Conclusions

• CD19 CAR T-cells are the most successful and best known CAR therapy providing durable responses in pediatric/young adult B-cell ALL, adult LBCL and MCL

• Unique toxicities of CRS and neurotoxicity may occur
 - Strategies for uniform grading to be used across clinical trials and the post-approval clinical setting recently published

• Clinical trials evaluating the use of CAR T-cells alone or in combination with other agents, in other malignancies, and versus standard of care therapies are ongoing

• Allogeneic CAR T-cell therapy may overcome barriers to current FDA approved products

Q&A SESSION

Advances in CAR T-cell Therapy

• Ask a question by phone:
 – Press star (*) then the number 1 on your keypad.

• Ask a question by web:
 – Click “Ask a question”
 – Type your question
 – Click “Submit”

Due to time constraints, we can only take one question per person. Once you’ve asked your question, the operator will transfer you back into the audience line.
HOW TO CONTACT US:

To contact an Information Specialist about disease, treatment and support information, resources and clinical trials:

Call: (800) 955-4572
Monday to Friday, 9 a.m. to 9 p.m. ET

Chat live online:
www.LLS.org/InformationSpecialists
Monday to Friday, 10 a.m. to 7 p.m. ET

Email: infocenter@LLS.org
All email messages are answered within one business day.

CLINICAL TRIAL SUPPORT CENTER
Work one-on-one with an LLS Clinical Trial Nurse Navigator who will help you find clinical trials and personally assist you throughout the entire clinical-trial process.
www.LLS.org/Navigation

NUTRITION CONSULTATIONS
Our registered dietitian has expertise in oncology nutrition and provides free one-on-one consultations by phone or email.
www.LLS.org/Consult.

LLS EDUCATION & SUPPORT RESOURCES

Online Chats
Online Chats are free, live sessions, moderated by oncology social workers. To register for one of the chats below, or for more information, please visit www.LLS.org/Chat.

Augmented Reality CAR T-Cell Therapy Process
Use your smartphone, tablet, or other mobile device to see the CAR T-cell therapy process in action, please visit www.LLS.org/CART.

Patient Podcast
The Bloodline with LLS is here to remind you that after a diagnosis comes hope. To listen to an episode, please visit www.TheBloodline.org.
The Leukemia & Lymphoma Society (LLS) offers the following financial assistance programs to help individuals with blood cancer: www.LLS.org/Finances

To order free materials: www.LLS.org/Booklets

THANK YOU

We have one goal: A world without blood cancers