Grant Finder

LLS investigators are outstanding scientists at the forefront of leukemia, lymphoma and myeloma research at centers throughout the world. Search to see the many research projects that LLS is currently funding.

Grant: 5470-18 | Career Development Program (CDP):

Location:Board of Trustees of the Leland Stanford Junior University, San Francisco, California 94144-4253

Year: 2017

Project Title: Dissecting The Topological Consequences Of Mutations In The Cohesin Complex And Their Contribution To Human Leukemia Initiation And Progression.

Project Summary:

The human genome is exquisitely organized, packing five feet of DNA into a microscopic nucleus. This level of compaction requires an equally impressive level of organization. Not only does the DNA have to fit into such a tiny space; the genes required for the cell’s function must be properly expressed with high fidelity. To accomplish this seemingly insurmountable task, the genome is organized into a cascading series of loops whose formation is mediated by a multi-protein complex called the cohesin complex. This complex forms a ring-like structure that holds the ends of each loop together much like the clasp of a necklace. Recently, mutations in the cohesin complex have been identified as major drivers of acute myeloid leukemia initiation and progression. With such an important basic cellular function as the organization of DNA, it remains of vital importance to understand how mutations in the cohesin complex mechanistically cause leukemia and to identify avenues for therapeutic intervention. 

Of the core components of the cohesin complex, the STAG2 gene is the most frequently mutated and is often lost altogether. Using state-of-the-art technologies, we will study how the composition and function of the cohesin complex changes in the context of a loss of the STAG2 protein. These technologies include the ability to map the three-dimensional organization of the genome, enabling us to study how the DNA loops that are orchestrated by the cohesin complex are disrupted in AML. These molecular and mechanistic studies will be accompanied by genetic and pharmacologic screening to identify putative therapeutic targets. Ultimately, this research will bring us closer to understanding how acute myeloid leukemia develops and how dysregulation of genome organization contributes to this process. We hope that our work will identify promising drug targets and facilitate the treatment of this otherwise deadly disease.

Grant: R6509-18 | Translational Research Program (TRP):

Location:University Health Network, Toronto, Ontario M5G 1Z5

Year: 2017

Project Title: Phase I Study Of Allogeneic Double Negative T Cells In Patients With High Risk AML

Project Summary:

Acute Myeloid Leukemia (AML) is a cancer affecting the bone marrow that requires intensive chemotherapy for disease control. This may be associated with significant toxicity. Treatment for AML aims to destroy the leukemia cells and allow the bone marrow to work normally again. Chemotherapies help most AML patients to achieve a state of remission in which the leukemic cells have fallen to a very low level and normal blood cell production has returned. However, despite decades of using chemotherapy to treat AML patients, there continues to be a very high chance of the disease coming back as the cancer cells develop resistance to chemotherapies. Once the disease comes back, few treatment options are available to patients. Consequently, overall survival is about 40% for those <50 years of age and is significantly worse for older patients.  Thus, new treatments that are effective at targeting chemotherapy-resistant AML with low toxicity are needed for this unmet challenge. 

Double negative T cells (DNTs) are a type of white blood cell in the blood that has the ability to selectively kill cancer cells while sparing normal cells and tissues. In peripheral blood, DNTs are quite rare. To be of value in the treatment of cancer it is necessary to have large numbers of these cells. We have developed methods in the laboratory to grow DNTs from healthy volunteers to large numbers and have shown that these DNTs have potent anti-leukemia effect without detectable toxicity on normal cells and tissues in animal models. In this first-in-man clinical trial, DNTs will be obtained from healthy donors and expanded (increased in numbers) in the laboratory, in order to enhance their tumor destroying potential. In addition, the most potent DNT donor will be selected for each patient by screening before his/her DNT treatment. DNTs will be administered at 3 different dose levels (different numbers of DNT cells) into 3 different groups of patients. After infusion of the first (lowest cell number) dose level, patients will be monitored to make sure they do not experience any severe adverse side effects. Only after the confirmation of the safety of the previous dose, the next group of patients will be given the next dose (higher cell number). In addition to determining the safety of DNT treatment, we will take blood samples from the treated patients at several time points after infusion to assess how long the DNT cells are detectable in the patients, which will provide guidance on the optimal number of injections and the time between each injection required to achieve the best results. In addition, we will determine if infusion of DNT cells changed the amount of time for the patients’ immune cells to recover from chemotherapy. Furthermore, whether DNT treatment will decrease AML cells and reduce the rate of the disease returning will be monitored. The results from this study will indicate whether DNTs can be safely used as a new treatment for AML to save patient lives.  

Grant: 6555-18 | Translational Research Program (TRP):

Location:The University of Texas MD Anderson Cancer Center, Houston, Texas 77210-4266

Year: 2017

Project Title: Immunotherapy For Multiple Myeloma Using Off-the-Shelf Cord Blood Derived Natural Killer Cells

Project Summary:

Multiple myeloma (MM) is caused by the malignant transformation of plasma cells. High dose chemotherapy followed by stem cell transplantation from a matched healthy donor (allogeneic stem cell transplantation) offers a potentially curative treatment for advanced cases of this disease. Unfortunately, only about 25% of MM patients can expect to benefit from this approach, mainly because of the high risk of infection and other toxicities associated with allogeneic stem cell transplantation, as well as the high relapse hazard that defines resistant MM. We propose to take advantage of an exciting new weapon, cancer immunotherapy, to combat high-risk MM without the risks associated with allogeneic stem cell transplantation. Natural killer (NK) cells, isolated either from the patients themselves or from normal adult donors, are being used increasingly because of their potent anti-cancer effects. We have identified umbilical cord blood as an ideal source of NK cells, as the cells are already frozen and ready for use, without the need for collection from an adult donor. The aim of this research is to harness NK cells to destroy MM cells. Recent progress in our laboratories has shown that NK cells can be isolated from cord blood and expanded outside the body to large enough numbers to be used in adult patients, where they are expected to kill MM cells efficiently without introducing major toxic effects. This NK cell activity, when combined with high dose chemotherapy, a novel drug called lenalidomide (which promotes the anti-myeloma effects of NK cells), and elotuzumab (an antibody that targets a protein on the surface of myeloma cells) could establish an entirely new strategy of effective immunotherapy for MM that may eliminate the need for allogeneic stem cell transplantation in this disease. Finally, we propose to boost the anti-myeloma potential of NK cells by engineering them to increase their ability to recognize and kill MM cells using a mouse model of the disease. If our attempt at specific targeting is successful in the laboratory, we will move this strategy into clinical testing as rapidly as possible. 

Grant: 6544-18 | Translational Research Program (TRP):

Location:Mayo Clinic, Rochester, Minneapolis, Minnesota 55486-0334

Year: 2017

Project Title: Modulating Immune Function In Peripheral T-cell Lymphoma (PTCL)

Project Summary:

Patients with peripheral T- cell lymphoma (PTCL) constitute approximately 12-15% of all lymphoma cases and PTCL patients typically have a poor outcome. Patients with PTCL typically respond to initial combination chemotherapy, but most patients subsequently progress and require additional therapy. Treatments such as romidepsin and belinostat have been approved for patients with PTCL, but their efficacy has been limited. There is therefore clearly a need for additional new therapies to treat patients with PTCL.

Multiple mechanisms account for the lack of durable benefit with current treatment, but the inability of tumor-specific immune cells to eradicate the lymphoma is a central issue. A novel mechanism used by cancer cells to inhibit the immune response, however, is overexpression of programmed death ligand 1 or 2 (PD-L1 or PD-L2). These proteins interact with the programmed death-1 (PD-1) receptor expressed on intratumoral T-cells and provide an inhibitory signal thereby suppressing anti-tumor immunity. In previous work, we have shown that PD-1/PD-1 ligand interactions are critically important in PTCL and have found that PD-1 is expressed both on malignant cells and in the tumor microenvironment.  Similarly, we have found that PD-L1 is highly expressed by malignant T-cells and intratumoral monocytes, and have shown that tumor-associated PD-L1 suppresses T-cell immunity. 

Monoclonal antibodies that block PD-1 signaling can prevent T-cell suppression and promote an anti-lymphoma immune response. Antibodies, directed against PD-1 or PD-L1, are currently being tested in clinical trials and have shown remarkable efficacy in some hematologic malignancies. Despite broad clinical use of PD-1 directed therapy, very little is known about the immunology of PD-1 signaling in hematological malignancies. In PTCL in particular, PD-1/PD-L1/2 signaling is complicated by the fact that the receptor and ligands can both be expressed on the cancer cell. Furthermore, initial clinical trials have included very few patients with PTCL; however, in 5 patients receiving nivolumab, an antibody that blocks PD-1 signaling, 2 patients had an objective response, suggesting possible efficacy of PD-1 blockade in PTCL. 

In this application, therefore, we propose to 1) measure the immune consequences of inhibiting PD-1/PD-1 ligand signaling, 2) determine the clinical efficacy of PD-1 blockade alone, and in combination with romidepsin, in patients with relapsed and refractory PTCL, and 3) determine the immunological predictors of clinical response to PD-1 therapy in patients with PTCL. In the proposed aims, we will determine how well PD-1 blockade works in PTCL, the specific mechanism of action of PD-1 blockade in PTCL, and in which subgroup of PTCL patients PD-1 blockade is predicted to have clinical benefit. Successful completion of this project is likely to have a major impact on clinical practice by potentially leading to an effective new therapy for patients with PTCL.

Grant: 6539-18 | Translational Research Program (TRP):

Location:Board of Trustees of the Leland Stanford Junior University, San Francisco, California 94144-4253

Year: 2017

Project Title: Applying An Innovative Microscopy Platform To Study Lymphoma In The Context Of A New Clinical Trial

Project Summary:

For decades, cancer treatment has relied on toxic chemotherapy to kill cancer cells, which also kills normal cells in the body and causes severe side effects. We have entered a new era of cancer therapies in which we harness the precision of the body’s immune system to seek and destroy each cancer cell, akin to how it rids the body of infections. However, this result currently remains out of reach for the vast majority of cancer patients. There are two main hurdles to overcome. First, we need better strategies that work in a larger proportion of patients. Second, and related, we need a better understanding of the ingredients necessary to produce a powerful immune response against the cancer.

To address the first challenge, our group has focused on a strategy called in situ vaccination, which involves injecting immune stimulants directly into a tumor to activate the body’s immune cells, which can then recognize and kill tumor cells anywhere in the body. These cells will also persist as memory cells to prevent the cancer from returning, similar to how a vaccine can prevent an infectious disease from taking root. The trick is to find the right combination of immune stimulants to make this work. In multiple mouse models of cancer, a small molecule called SD-101 and an antibody drug that recognizes the OX40 protein on immune cells combine to produce this exact result. SD-101 is a synthetic molecule that mimics bacterial DNA, thus acting as a danger signal that activates the immune system.  We have found that this activation increases the amount of OX40 protein on T cells in the tumor, the immune cells responsible for recognizing and killing tumor cells. The anti-OX40 antibody boosts the activation of these T cells while also suppressing regulatory cells that dampen the immune response. In mice growing two tumors under their skin, injecting these two agents directly into just one tumor results in both tumors disappearing. We now propose to study this novel approach in patients with lymphoma in a clinical trial.

With regard to the second challenge, we have struggled to understand how cancer cells and immune cells interact because we lack techniques to study these processes broadly in small patient samples. Thus, we are collaborating to pilot a novel microscopy platform that simultaneously identifies a diverse array of cell types and proteins in a patient’s cancer, while preserving the tissue architecture, something that has not previously been possible. We propose to use this technique to study samples from patients as they undergo our combination treatment, to provide an unprecedented look at the precise interactions between the immune system and cancers. Armed with this knowledge, we hope to one day bring the power of immunotherapy to all cancer patients.

Grant: 5471-18 | Career Development Program (CDP):

Location:Harvard Medical School, Boston, Massachusetts 02241-5649

Year: 2017

Project Title: Studying The Function Of Co-activator MAML1 In Notch-associated T-cell Acute Lymphoblastic Leukemia

Project Summary:

Normal cell growth and differentiation relies on a small number of signaling pathways that direct the gene expression patterns unique to each cell type. One pathway particularly important in cell-cell communication is the Notch pathway, which normally relies on direct contact between a signal-sending cell and a signal-receiving cell. After the signal is activated, a portion of the Notch protein enters the cell nucleus and forms a complex with two other proteins, called RBPJ and MAML1, to regulate the expression of genes that control cell growth and cell fate decisions. Aberrant activation of the Notch pathway by mutations, however, leads to the development of T cell acute lymphoblastic leukemia (T-ALL). In fact, Notch1 mutations are found in more than half of all human T-ALL cases. The goal of my project is to understand how the MAML1 gene cooperates with Notch to induce the production of Notch-responsive genes. In one line of study, I will use a Notch inhibitor to toggle the Notch pathway between “on” and “off” states, and determine what protein partners MAML1 chooses in the “Notch active” state and how these partnerships affect its function. I will also analyze the temporal sequence of events that take place in the nucleus after Notch is switched on in leukemic cells, focusing on the role of MAML1 in the induction of target gene expression. These studies will help us understand how Notch and MAML1 cooperate to stimulate aberrant gene expression in leukemic cells and may lead to new strategies for therapeutic development in T-ALL.

Grant: 1348-18 | Career Development Program (CDP):

Location:Northwestern University, Evanston, Illinois 60208

Year: 2017

Project Title: The Role Of Plek2 In The Pathogenesis Of Myeloproliferative Neoplasms

Project Summary:

Myeloproliferative neoplasms (MPNs) are a group of bone marrow diseases with overproduction of mature blood cells and increased risk of evolving to acute leukemia. A specific mutation on one of the blood cell surface proteins called Jak2 is the leading cause of this group of diseases. The discovery of this mutation led to the development of inhibitors specifically targeting Jak2. However, these inhibitors are not curative. In addition, MPN patients treated with these inhibitors often develop drug resistance and significant side effects due to the indispensable roles of this blood surface protein in normal blood production. We have been studying new approaches to treating MPNs, especially focusing on the proteins that are important for the development of MPN disease but not essential for normal blood cells. We identified one of these proteins, Plek2, which a part of normal red blood cell development but may also be involved in the disease state in some MPNs. Our studies using mouse models and tumor cell lines demonstrated that Plek2 is critical for the MPN disease development and is a mediator of Jak2 signaling. In addition,mice that lose Plek2 do not exhibit obvious side effects. These novel discoveries made Plek2 an attractive drug target for the treatment of MPNs. The overall goal of my research is to better understand how Plek2 reverts the disease progression in MPNs using mouse models and bone marrow cells from MPN patients. We will analyze how Plek2 mediates Jak2 signaling as well as how Plek2 may be involved in other MPN mutations, such as CALR and MPL. Successful completion of this project will lay the foundation for targeting Plek2 as a novel therapeutic approach for the clinical management of MPNs.

Grant: 3375-18 | Career Development Program (CDP):

Location:Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024

Year: 2017

Project Title: Enhancing Adoptive Immunotherapy Of AML With Engineered T Cells By Expressing Immunomodulatory Fusion Proteins That Overcome Inhibitory Signals

Project Summary:

Acute myeloid leukemia (AML) is the most common acute leukemia in adults and has the worst survival rate of all leukemias, with only 26% of AML patients surviving 5 years. Since our immune cells can have the ability to eradicate tumors, immunotherapeutic approaches are being developed as treatment options with the goals of providing better efficacy and fewer side effects. One form of immunotherapy is adoptive immunotherapy, which provides an opportunity to genetically modify T cells to recognize and destroy tumors and generate a population of memory cells that can serve as a “living drug.” We identified a T cell receptor (TCR) that recognizes and tightly binds WT1 – a well-validated protein that promotes the cancerous activity of tumors – and observed clinical activity in patients with T cells modified to express this TCR. However, tumor cells can express inhibitory proteins that block activation of the T cells that recognize the tumor and thereby avoid immune-mediated eradication. To overcome this inhibition and further enhance efficacy, we engineered immunomodulatory fusion proteins (IFPs)that combine a tumor-specific inhibitory receptor with a costimulatory signaling domain, essentially to replace a “brake” with an “accelerator” for the immune response. By this method, we have effectively targeted several inhibitory proteins, demonstrated that we can significantly improve T cell therapy in a mouse model of AML, and acquired initial evidence of function in human T cells. To obtain data needed to translate our findings into the clinic, we plan to assess safety and potential toxicity to normal tissues in mouse models with T cells expressing different IFPs targeting AML cells expressing the relevant proteins. We will also assess efficacy with human IFPs in human T cells targeting AML cells in mouse models. Our long-term goals are to validate this approach in clinical trials, advancing a novel, safe and effective T cell immunotherapy that ultimately will improve AML patient outcomes.

Grant: 8012-18 | Screen to Lead Program (SLP):

Location:H. Lee Moffitt Cancer Center & Research Institute, Atlanta, Georgia 30374-2801

Year: 2017

Project Title: Rationally Designed Dual BRD4-Kinase Inhibitors For The Treatment Of Myeloid Cancer

Project Summary:

Current anti-cancer targeted drugs often fail due to ineffectiveness or drug resistance, suggesting alternative strategies are needed to develop effective therapies. We recently determined that certain drugs bind to and inhibit two different classes of proteins that play important roles in cancer. These two classes are called kinases and BET proteins, which have completely different functions in the cell. The general approach in drug discovery has been to optimize a single drug to target a single protein. Our identification of the dual inhibitory activity of BET-kinase inhibitors provides an opportunity to optimize inhibiting both targets with a single drug. To this end, we have developed drugs that exhibit improved kinase and BET inhibitor activity. The ability of these compounds to target multiple regulators of cancer may provide superior effectiveness against blood cancers that are known to require both targets of the drug. For example, one of the dual inhibitors targets the JAK2 kinase, which is a major driver of myeloid cancers. JAK2 kinase inhibitors, which have been designed to solely target kinase activity, have not been successful in patients due to ineffectiveness and drug resistance. As these cancer cells also require BET protein function, our dual inhibitors may improve effectiveness and prevent drug resistance, a concept support by our initial studies. This proposal is written to support our optimization and development of our lead compounds for blood cancers.

Grant: 5474-18 | Career Development Program (CDP):

Location:The University of Chicago, Chicago, Illinois 60637

Year: 2017

Project Title: Transcriptional And Epigenetic Roles For β-catenin In The Genomic Instability And Oncogenic Transformation Of T-cell Leukemia/lymphoma

Project Summary:

Cancer arises from changes in DNA, and these changes can come in various forms. In the case of leukemia and lymphoma, most have genomic instability, meaning the normal organization of DNA (the genome) is disrupted due to improper repairing of DNA breaks. DNA is organized into structures known as chromosomes, and changes to normal chromosomal structure is evidence of genomic instability in a cell. Chromosomal defects mark approximately 80% of T-cell leukemia and often involve the moving of cancer-causing genes to other chromosomes (translocation) into positions that switch them “on.” This instability of the genome is a continuous process and allows for selection of ever more aggressive and therapy-resistant tumor cells. Our protein of interest, beta-catenin, has very tightly controlled, low expression levels in normal cells; however, uncontrolled beta-catenin expression has been linked to genomic instability in cancer through mechanisms that remain unclear.

Previous work from our lab showed that uncontrolled beta-catenin expression causes mice to develop T-cell leukemia. These leukemias have genomic instability and chromosomal defects similar to those seen in T-ALL patients. The pattern of DNA breaks suggests that the excess beta-catenin impairs mechanisms (known as checkpoints) that ensure that DNA is replicated and repaired correctly. In fact, these mice have lower than normal expression levels of genes required for DNA checkpoints and repair. Based on observations of this model, I hypothesize that beta-catenin affects multiple levels of gene regulation to impair DNA checkpoints and repair. Beta-catenin controls transcriptional mechanisms of gene expression, which switch genes “on” or “off,” as well as epigenetic mechanisms, which change the shape of DNA to allow various kinds of gene regulators to interact. Using state-of-the-art genomic technologies, I will examine DNA checkpoint and repair mechanisms to understand both transcriptional and epigenetic changes that happen in cells with uncontrolled beta-catenin. I will also examine cells from leukemia patients to apply what I see in my mouse model to human disease.

Chromosomal defects are a driving force in cancer and reflect a fundamental failure of the checkpoints that maintain genome integrity. My goal is to increase our understanding of how beta-catenin controls these intricate cellular processes. My studies aim to identify novel strategies for the treatment of this complex blood cancer.