Grant Finder

LLS investigators are outstanding scientists at the forefront of leukemia, lymphoma and myeloma research at centers throughout the world. Search to see the many research projects that LLS is currently funding.

Grant: 8011-18 | Screen to Lead Program (SLP):

Location:The Trustees of Columbia University in the City of New York, Columbia University Medical Center, New York, New York 10027

Year: 2017

Project Title: Development Of NT5C2 Inhibitors For Treatment Of Relapsed Refractory ALL

Project Summary:

Despite intensive chemotherapy, 20% of pediatric and over 50% of adult acute lymphoblastic leukemia (ALL) patients fail to achieve a complete remission or relapse after intensified chemotherapy, making relapse and resistance to therapy the most significant challenge in the treatment of this disease. This project seeks to develop highly active and specific inhibitors of NT5C2, a protein activated by mutations in relapsed leukemia cases.

Grant: 6526-18 | Translational Research Program (TRP):

Location:Washington University School of Medicine in St. Louis, St. Louis, Missouri 63112-1408

Year: 2017

Project Title: Improving Risk Assessment Of AML With A Precision Genomic Strategy To Assess Mutation Clearance

Project Summary:

Acute Myeloid Leukemia (AML) is the most common form of acute leukemia in adults. More than 20,000 people developed AML in the US in 2015, with ~11,000 deaths.  Although most people who get the disease achieve an initial remission, the majority relapse and eventually die from their disease, usually within two years of presentation.  For two decades, the chromosomal profile of AML cells examined at presentation has been used to help predict the risk of relapse. If that risk is high, patients benefit from a stem cell transplant performed during the first remission.

Grant: R6509-18 | Translational Research Program (TRP):

Location:University Health Network, Toronto, Ontario M5G 1Z5

Year: 2017

Project Title: Phase I Study Of Allogeneic Double Negative T Cells In Patients With High Risk AML

Project Summary:

Acute Myeloid Leukemia (AML) is a cancer affecting the bone marrow that requires intensive chemotherapy for disease control. This may be associated with significant toxicity. Treatment for AML aims to destroy the leukemia cells and allow the bone marrow to work normally again. Chemotherapies help most AML patients to achieve a state of remission in which the leukemic cells have fallen to a very low level and normal blood cell production has returned.

Grant: 6555-18 | Translational Research Program (TRP):

Location:The University of Texas MD Anderson Cancer Center, Houston, Texas 77210-4266

Year: 2017

Project Title: Immunotherapy For Multiple Myeloma Using Off-the-Shelf Cord Blood Derived Natural Killer Cells

Project Summary:

Multiple myeloma (MM) is caused by the malignant transformation of plasma cells. High dose chemotherapy followed by stem cell transplantation from a matched healthy donor (allogeneic stem cell transplantation) offers a potentially curative treatment for advanced cases of this disease. Unfortunately, only about 25% of MM patients can expect to benefit from this approach, mainly because of the high risk of infection and other toxicities associated with allogeneic stem cell transplantation, as well as the high relapse hazard that defines resistant MM.

Grant: 6544-18 | Translational Research Program (TRP):

Location:Mayo Clinic, Rochester, Minneapolis, Minnesota 55486-0334

Year: 2017

Project Title: Modulating Immune Function In Peripheral T-cell Lymphoma (PTCL)

Project Summary:

Patients with peripheral T- cell lymphoma (PTCL) constitute approximately 12-15% of all lymphoma cases and PTCL patients typically have a poor outcome. Patients with PTCL typically respond to initial combination chemotherapy, but most patients subsequently progress and require additional therapy. Treatments such as romidepsin and belinostat have been approved for patients with PTCL, but their efficacy has been limited. There is therefore clearly a need for additional new therapies to treat patients with PTCL.

Grant: 5471-18 | Career Development Program (CDP):

Location:Harvard Medical School, Boston, Massachusetts 02241-5649

Year: 2017

Project Title: Studying The Function Of Co-activator MAML1 In Notch-associated T-cell Acute Lymphoblastic Leukemia

Project Summary:

Normal cell growth and differentiation relies on a small number of signaling pathways that direct the gene expression patterns unique to each cell type. One pathway particularly important in cell-cell communication is the Notch pathway, which normally relies on direct contact between a signal-sending cell and a signal-receiving cell. After the signal is activated, a portion of the Notch protein enters the cell nucleus and forms a complex with two other proteins, called RBPJ and MAML1, to regulate the expression of genes that control cell growth and cell fate decisions.

Grant: 6539-18 | Translational Research Program (TRP):

Location:Board of Trustees of the Leland Stanford Junior University, San Francisco, California 94144-4253

Year: 2017

Project Title: Applying An Innovative Microscopy Platform To Study Lymphoma In The Context Of A New Clinical Trial

Project Summary:

For decades, cancer treatment has relied on toxic chemotherapy to kill cancer cells, which also kills normal cells in the body and causes severe side effects. We have entered a new era of cancer therapies in which we harness the precision of the body’s immune system to seek and destroy each cancer cell, akin to how it rids the body of infections. However, this result currently remains out of reach for the vast majority of cancer patients. There are two main hurdles to overcome. First, we need better strategies that work in a larger proportion of patients.

Grant: 1348-18 | Career Development Program (CDP):

Location:Northwestern University, Evanston, Illinois 60208

Year: 2017

Project Title: The Role Of Plek2 In The Pathogenesis Of Myeloproliferative Neoplasms

Project Summary:

Myeloproliferative neoplasms (MPNs) are a group of bone marrow diseases with overproduction of mature blood cells and increased risk of evolving to acute leukemia. A specific mutation on one of the blood cell surface proteins called Jak2 is the leading cause of this group of diseases. The discovery of this mutation led to the development of inhibitors specifically targeting Jak2. However, these inhibitors are not curative.

Grant: 3375-18 | Career Development Program (CDP):

Location:Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024

Year: 2017

Project Title: Enhancing Adoptive Immunotherapy Of AML With Engineered T Cells By Expressing Immunomodulatory Fusion Proteins That Overcome Inhibitory Signals

Project Summary:

Acute myeloid leukemia (AML) is the most common acute leukemia in adults and has the worst survival rate of all leukemias, with only 26% of AML patients surviving 5 years. Since our immune cells can have the ability to eradicate tumors, immunotherapeutic approaches are being developed as treatment options with the goals of providing better efficacy and fewer side effects.

Grant: 7014-17 | Specialized Center of Research Program (SCOR):

Location:Sloan Kettering Institute for Cancer Research, New York, New York 10087

Year: 2017

Project Title: Novel Immune Therapy Of Lymphoma

Project Summary:

Patients with relapsed diffuse large B cell lymphoma (DLBCL) have limited curative options, once their tumor fails to respond to standard chemotherapy regimens.   Our group and others have recently demonstrated that activating the patients’ own immune cells can induce clinical responses, even in chemotherapy-refractory DLBCL patients.  The central goal of this SCOR is to establish a collaborative team-science approach aiming at the development of new immune therapeutic strategies for DLBCL.