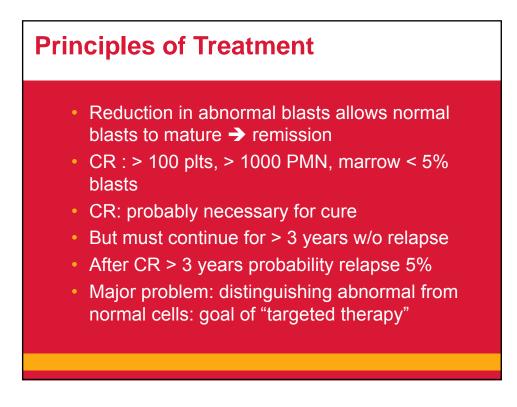
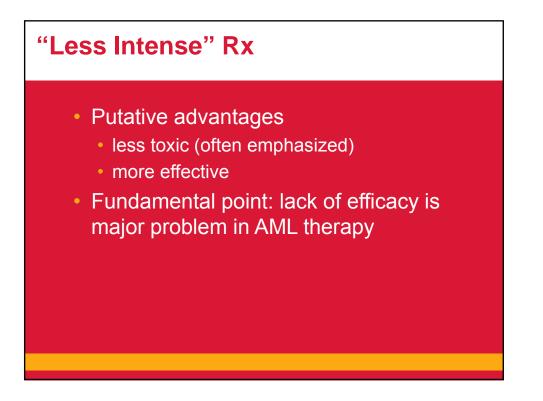


Topics

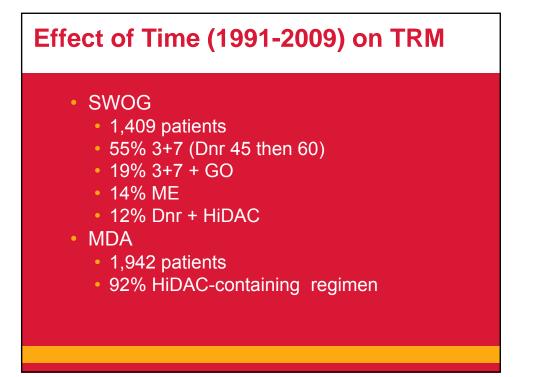

- What is AML?
- Treatment-related mortality (TRM) vs. resistance as causes of treatment failure
- Standard therapy vs. investigational therapy
- Transplant
- Making patients' lives more pleasant

Typical Case


- Patient has fatigue, shortness of breath
- Blood count shows anemia, which causes symptoms
- Platelet count, neutrophil count also low possibly leading to bruising (platelets) or infection (neutrophils)
- Bone marrow obtained: site of blood cell formation

What is AML?

- RBCs, PMNs, platelets limited life span
- Mechanism to replace them resides in marrow:
 - immature cells ("blasts") → mature RBC, PMN, plts
- - don't mature, accumulate (marrow failure)
 - prevent normal blasts from maturing (marrow failure)
 - escape into blood
- Bone marrow failure
 → infections, less often bleeding
- Diagnosis: accumulation of blasts in marrow, blasts in blood



		Age				
	<u>56-65</u>	<u>66-75</u>	<u>>75</u>			
Pts	246	274	80			
CR	46%	39%	33%			
TRD (d30)	11%	20%	31%			
Resis	43%	41%	36%			
Appelbaum et al. Blood 2006;107:3481-3485						

Relapse vs. Death in CR							
	Rate of						
<u>Age</u>	<u>PS at CR</u>	<u>Pts.</u>	<u>Relapse</u>	Die in CR	<u>Ratio</u>		
< 60	<2	428	25.9	1.7	15.2		
< 60	2-4	54	22.3	4.6	4.8		
≥ 60	<2	262	46.0	10.8	4.3		
≥ 60	2-4	120	51.7	17.2	3.0		
≥ 70	2-4	71	67.3	22.0	3.1		
Yanada et al. Haematologica 2008;93:633-34							

RM Summary					
Cohort	91-95	96-00	01-05	06-09	P-value
SWOG	18%	13%	12%	3%	<0.001
MDA	16%	14%	9%	4%	<0.001

Decline in TRM with Time

- TRM rates decreased over time
- Pt. characteristics more favorable over time
- Results same after accounting for this
- Same is true in younger & older patients (selection bias less likely an issue)
- Major issue is efficacy, not toxicity

Othus et al. Leukemia epub 6/13/13 doi: 10.1038/leu.2013.176

Management Options for AML

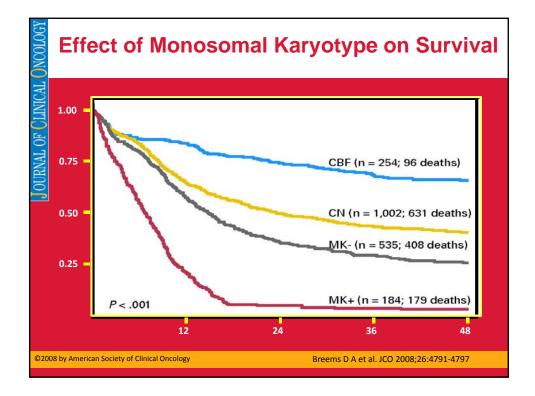
- Supportive care only
- Standard therapy
- Clinical trial

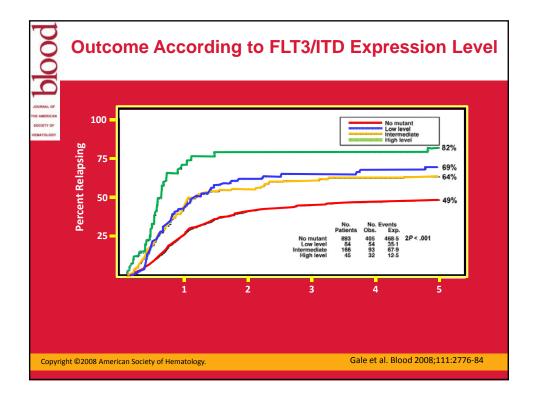
Supportive Care Only

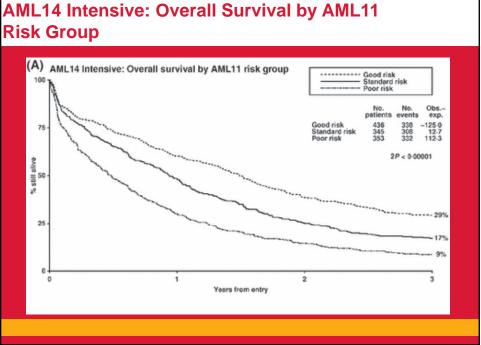
- Life expectancy probably better than originally described (1961)
- But must be viewed relative to 20-25 year life expectancy for healthy patients aged 60-70
- Morbidities: frequent transfusions and doctor visits; fatigue

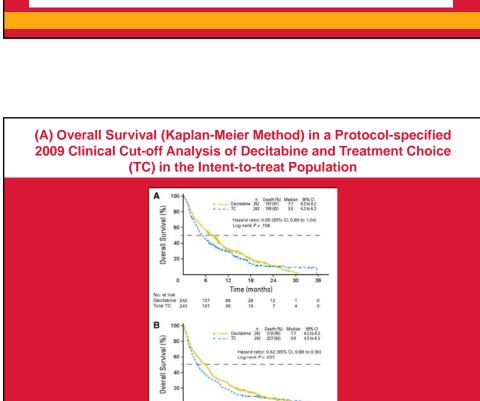
Standard Therapy vs. Clinical Trial

- Standard → given to so many patients that results not in doubt, examples 3+7, decitabine, azacitidine
- Trial → results largely unknown
 - preclinical rationale imperfect
 - small number patients treated
 - patients differ (age, cytogenetics, etc.)
 - short follow-up
- So deciding standard vs. trial depends on how patient views results standard


Prognostic Factors With Standard Therapy: TRM


- Performance status
- Co-morbidities
- Organ function
- Age


Example 1: otherwise healthy 50 y.o. TRM <3% Example 2: debilitated with abnormal kidney function 75 y.o. TRM >50% THINK BEYOND AGE!!!!!!


Prognostic Factors with Standard Therapy: Resistance

- Cytogenetics in AML blasts
 - best: inv(16) and t(8;21)
 - average: normal (NK)
 - below average: others, not MK
 - MK
- Various mutations in patients with NK
- Secondary AML
 - after chemotherapy for breast, lymphoma, etc.
 - after MDS or other hematologic disorders
- Age

18 24 30

Time (months)

12

137 78 107 68

0

No. at risk Decitabine 242 Total TC 243

©2012 by American Society of Clinical Oncology

36 42 48

JOURNAL OF CLINICAL ONCOLOGY ASCO

 50
 28
 11
 2
 0
 0

 35
 20
 10
 4
 2
 0

Medical Significance Azacitidine Trial

- If healthy, 70 year old might expect to live 15 years (180 months)
- With LDAC most likely lives 16 mo. Retaining 9% of life expectancy (16/180)
- With aza most likely lives 24 mo., retaining 13%
- Need better means to depart from average prediction

Which Trial?

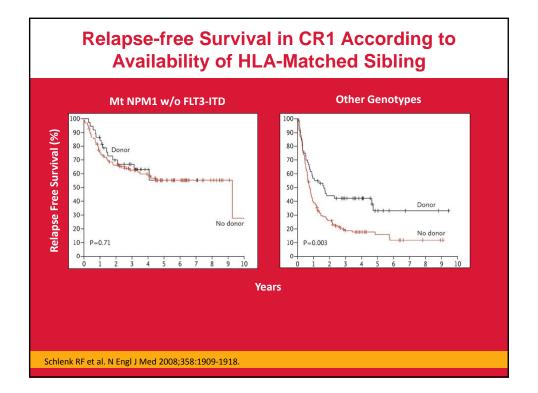
- Clinicaltrials.gov \rightarrow 33 trials for pts. age > 65
- Implies no one certain which best
- Reasons for uncertainty
 - imperfect understanding of difference
 - between AML blast & normal counterpart
 - insufficient # pts. treated
 - patients differ among themselves
 - short follow-up

Which Trial?

- Trial offered depends where you go
- Cannot recommend internet search to intellectualize best trial
- Go on trial in academic center where you are most comfortable
- Make sure trial has stopping rules!
- Be prepared for success: many currently curable diseases once had same prognosis as AML until trials done (AIDS, CML, APL)

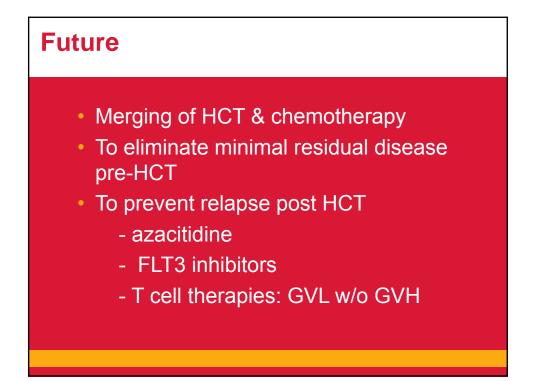
"Targeted Therapy"

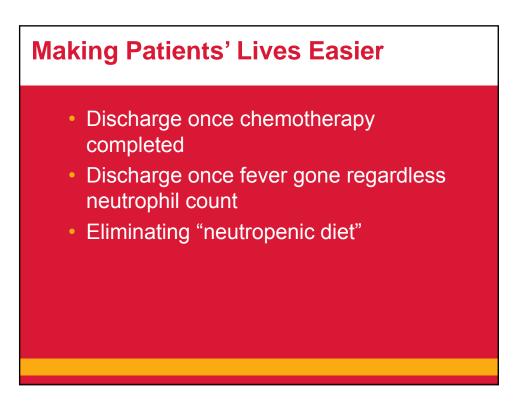
- Selectively affects AML blast
- But several targets may need to be affected simultaneously (example imatinib)
- Eventually combined with chemotherapy (gemtuzumab ozogamicin, FLT3 inhibitors)
- Boost immunologic response

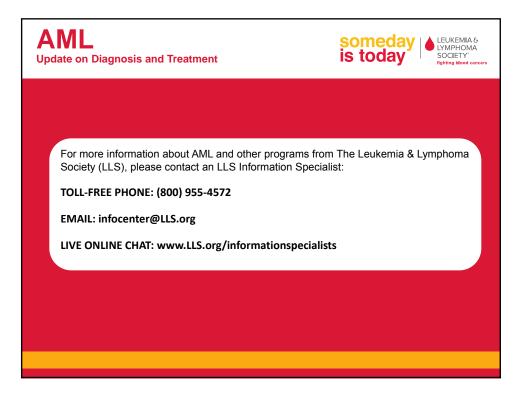

Allogeneic Hematopoietic Cell Transplant (HCT) in CR1

<u>Cyto</u>	<u>Donor</u>	<u>No Donor</u>	<u>HR (95% CI)</u>
Best	188	359	1.07 (0.83-1.38)
Inter	864	1635	0.83 (0.74-0.93)
Worst	226	366	0.73 (0.59-0.90)

Cyto as per ECOG/SWOG


HR < 1.0 means longer survival with HCT


Koreth et al. JAMA 2009;301:2349-61


Extensions of HCT Beyond Ablative Sib in CR1

- Reduced intensity HCT up to age 75-relies on graft vs. AML effect
- Matched unrelated reduced intensity HCT up to age 75
- Cord blood
- Haploidentical donors
- HCT survival better 2003-07 vs. 1993-97

