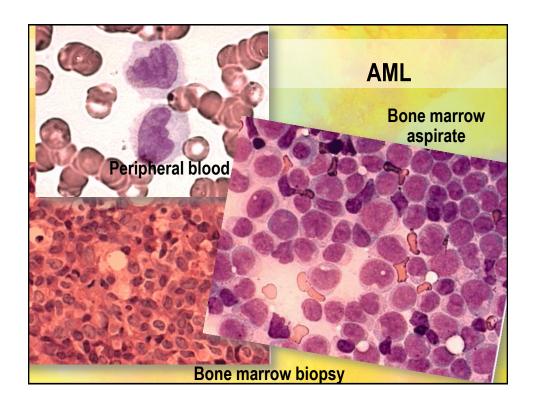


Acute Leukemia

- Arises from a single transformed hematopoietic stem cell – "clonal"
- Characterized by block in normal blood cell maturation and growth advantage
- Very heterogeneous group of diseases
- Often defined by recurring abnormalities of chromosomes within leukemic stem cell

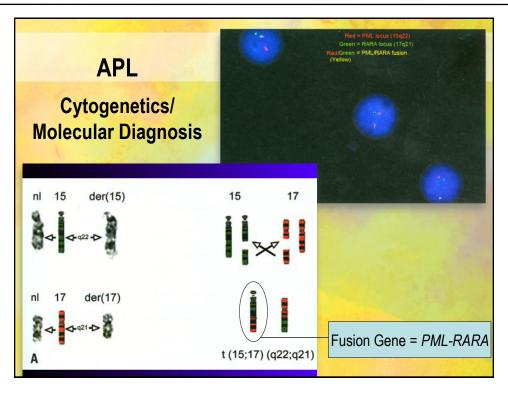
Clinical Features of Acute Leukemia

- Fatigue, easy bruising, pallor
- Fevers
- Result from maturation arrest of blood cell development
 - Anemia
 - Thrombocytopenia (low platelets)
 - Neutropenia (absence of normal granulocytes)


Goals of Treatment for Acute Leukemia

- Eradication of malignant clone
- Combination chemotherapy
 - Based on semi-selective killing of rapidly dividing cells
- New strategies involve development of drugs that specifically "target" abnormalities unique to the leukemia population
- Restore normal hematopoiesis (normal blood cell growth and development)

Diagnostic Work-up


- Examination of blood smear
- Bone marrow examination
- Immunophenotyping
 - Identifies proteins on cell surface that are present in AML
- Cytogenetics/FISH
 - Identify chromosome rearrangements and deletions
- Molecular diagnostics: Identify mutations
 - PML-RARA in acute promyelocytic leukemia
 - FLT3, NPM1, CEBPA
 - Future: IDH1, IDH2, TET2, DNMT3A, WT1
- Patients who might be considered for transplant should have HLA-typing done at time of diagnosis

July 19, 2012

Ancillary Testing/Services

- MUGA scan
- Placement of indwelling tunneled catheter
 - HICKMAN (triple lumen) typically used
 - Apheresis catheter (larger lumens) if considering autologous stem cell collection
- Pretreatment CT scan sinus, high resolution CT chest can be considered
- Dental examination
- Provera for menstruating females

Discuss fertility issues

Supportive Care Critical

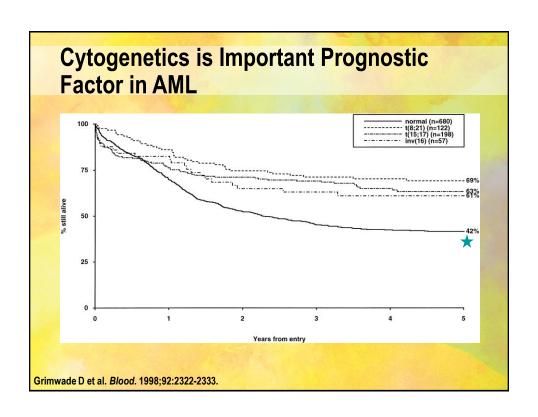
- At diagnosis: DIC panel, LDH, uric acid
- Careful hydration, allopurinol
 - Rasburicase (urate oxidase) to prevent tumor lysis
- Judicious use of blood, platelet transfusions
 - Typically, maintain Hgb >8 gm/dl
 - Platelets >10 K
- Hematopoietic growth factors may be useful
 - G-CSF

Infections

- Prophylaxis during neutropenia: Data supportive for prophylaxis
 - Antibacterial: Avelox® (moxifloxacin)
 - Antifungal: Diflucan[®] (fluconazole) or voriconazole in high-risk pts
 - Consider anti-viral if HSV+: Acyclovir 400 mg/day
 - PCP prophylaxis in ALL, CLL
- Treatment of neutropenic fever
 - Based on source, if possible:
 - Ceftazidime, meropenem, vancomycin
 - Voriconazole, posaconazole, AmBisome® (amphotericin), micafungin

AML: Epidemiology Risk Factors Genetic Disorders Down syndrome Patau syndrome **Neurofibromatosis** Fanconi anemia Klinefelter syndrome Kostmann syndrome Shwachman syndrome Benzene **Embalming fluids Physical & Chemical** Pesticides Herbicides **Exposures** Cigarette smoking Both therapeutic and nontherapeutic radiation **Radiation Exposure** Chemotherapy Alkylating agents Topoisomerase-II inhibitors Anthracyclines Epipodophyllotoxins **Taxanes** Deschler B, Lübbert M. Cancer. 2006;107:2099-2107.

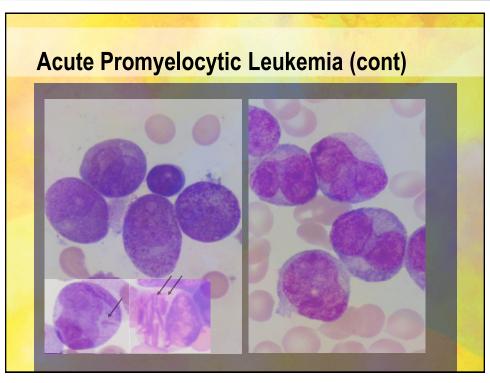
How Do We Treat AML?

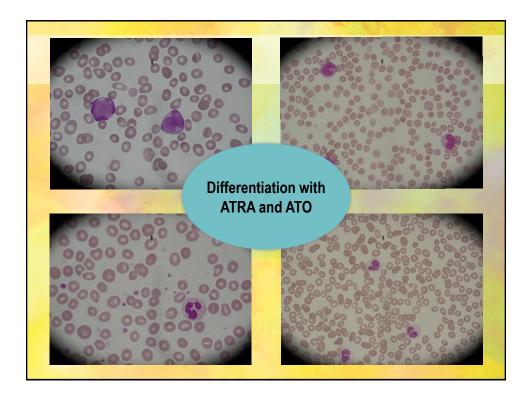

- Most active traditional chemotherapy drugs:
 - Cytarabine purine analog
 - Anthracycline: daunorubicin, idarubicin, mitoxantrone
 - Other agents with activity: etoposide
- Agents often given in combination: "7+3"
- Induction therapy to achieve "complete remission"

Post-remission chemotherapy

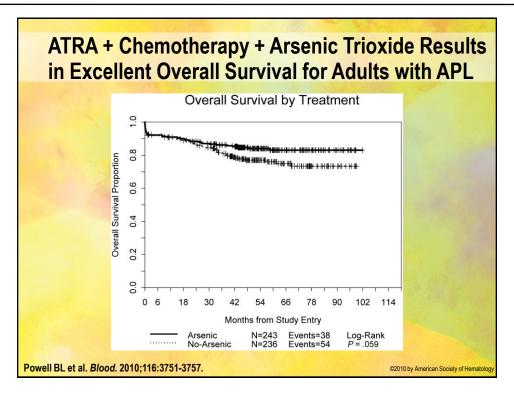
Post-Remission Therapy for Acute Leukemia: Several Options

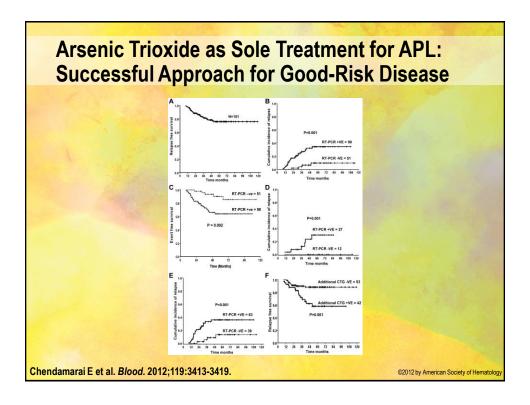
- Additional courses of chemotherapy are required for eradication of disease
 - "Consolidation of remission"
 - May cure good-risk patients
- Intensification with hematopoietic stem cell transplantation
 - Autologous (patient's own stem cells)
 - Allogeneic (donor stem cells)
 - May improve outcome of higher risk patients

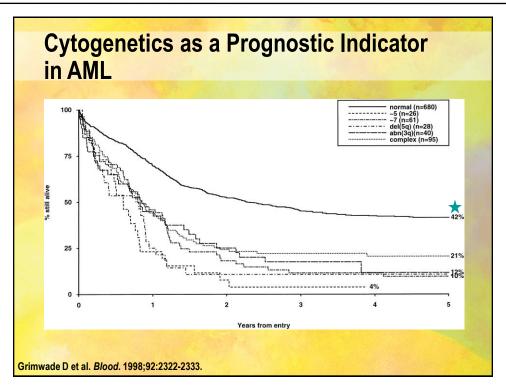

Looking Towards the Future

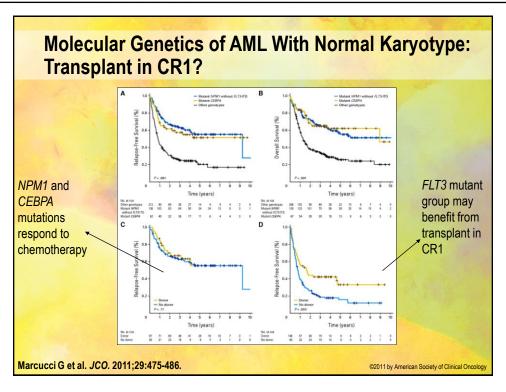

- How can we incorporate insights of disease biology into treatment?
- 3 examples...

Acute Promyelocytic Leukemia


- Must identify this subset at diagnosis
- Treatment directed at molecular abnormality resulting from t(15;17), the PML-RARA fusion gene
 - Results in abnormal signaling through retinoic acid receptor
- ATRA (all-trans retinoic acid) incorporated into treatment with standard AML chemotherapy now results in cure of majority of patients!
 - Addition of arsenic trioxide to frontline therapy improves outcome
- Arsenic trioxide as sole therapy results in prolonged remissions in good-risk patients

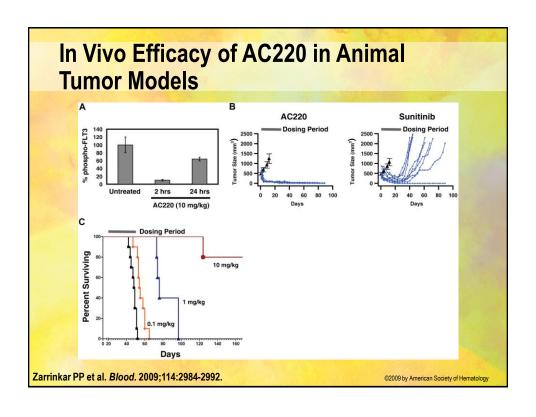






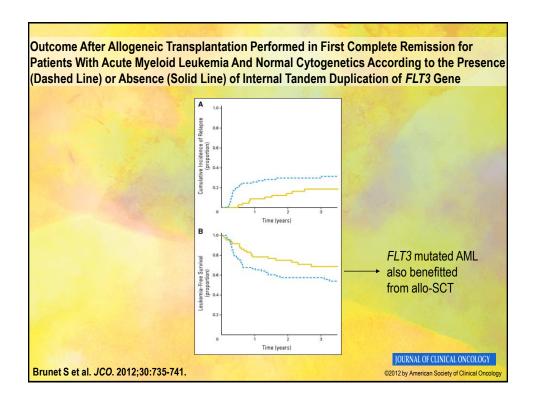
FLT3 Mutations in AML

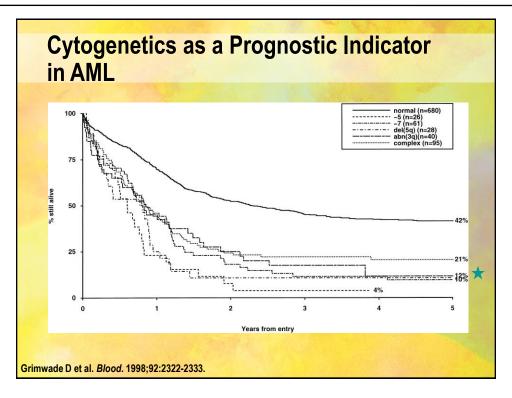
- FLT3 is a tyrosine kinase critical to normal myeloid cell growth and development
- FLT3 mutations occur in 20-30% of adults with AML
 - Occurs in all age groups
 - Most common in AML with a normal karyotype
- Remission rates are quite high; but early relapses occur with standard AML chemotherapy


Targeting FLT3: Use of TKIs

- Multiple TKIs have been tested and demonstrate some single agent activity with target inhibition:
 - Sorafenib
 - Midostaurin
 - AC220 (quizartinib)
- Recently completed international trial C10603 testing benefit of midostaurin + chemotherapy in adults <60 years with FLT3 mutant AML
 - Randomized phase III trial
 - Trial results pending

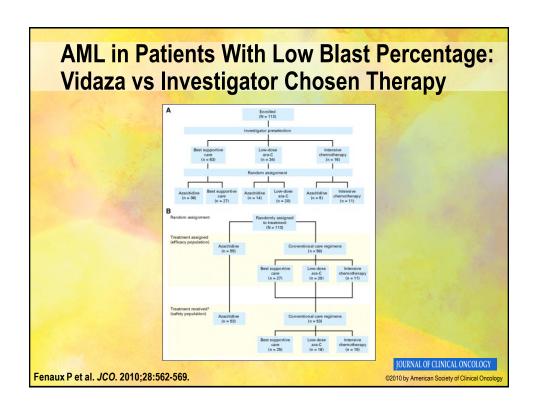
Current FLT3 Inhibitor Trials


- Combination trial for frontline treatment in older adults with FLT3 mutations
 - Combining chemotherapy with sorafenib
 - Ongoing trial in the Alliance
- Most active agent to date may be AC220
 - Currently in expanded phase II studies of two different doses for patients with relapsed AML
 - Multi-center trial just opened

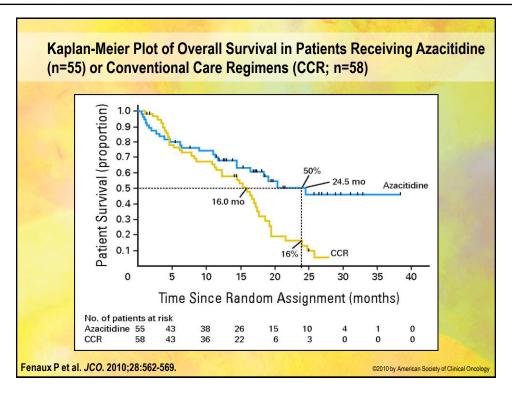


FLT3 Mutant AML: Treatment Recommendation

- Screen for FLT3 mutation at time of diagnosis
- HLA typing should be done at diagnosis
- Enroll on frontline clinical trial that incorporates FLT3 inhibitor trial with chemotherapy
- Consider allogeneic stem cell transplant in first remission
- Clinical trials with new inhibitors for relapse such as quizartinib or other

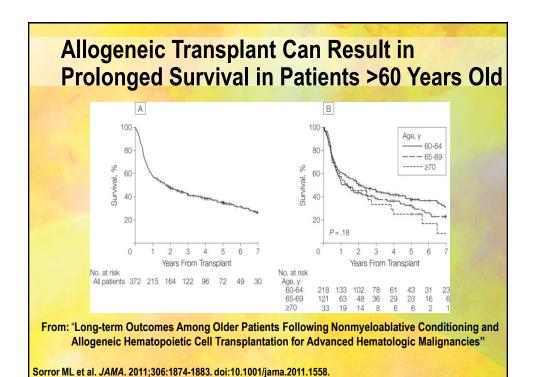

Poor-Risk AML: What is New?

- Biology and age often coincide in AML
 - Poor-risk disease and older age associated
- Often associated with AML that arises from a preceding myelodysplastic syndrome or myeloproliferative disease
- Standard cytotoxic chemotherapy has not been an effective strategy



The Epigenome and AML

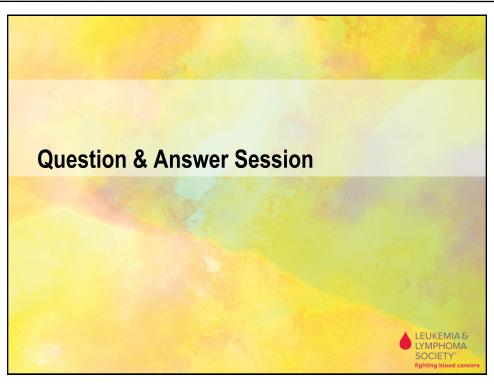
- Regulation of myeloid development
- Evidence for abnormal methylation/silencing of genes that are critical for normal myeloid development
- Multiple studies suggest that use of drugs that may regulate epigenome may be effective
 - Vidaza[®] (5-azacitidine)
 - Dacogen® (deoxycytidine)
 - Histone deacetylase inhibitors (vorinostat)


Decitabine: Prolonged Exposure Better?

- Decitabine was given for 10 days at dose of 20 mg/m² to older adults with untreated AML
 - Median age was 74 years
- Complete remission was achieved in 50% of patients after median of 3 cycles
 - Patients with both normal and poor-risk cytogenetics responded

Ongoing or Planned Trials for High-Risk/ Older Patients

- A recently activated Alliance phase II trial in previously untreated older AML patients randomized to decitabine (x10 days) versus decitabine plus bortezomib (subcutaneous) (Alliance 11002)
 - Based on intriguing data that bortezomib can enhance decitabine activity
 - miR-29b upregulation
- ECOG trial: Evaluating clofarabine (another active agent) in older adults with AML
- SWOG trial: Azacitidine + Mylotarg® (gemtuzumab ozogamicin, a monoclonal antibody)


Older Adults with AML: Suggestions


- Standard treatment with chemotherapy may benefit only limited numbers of older adults with AML
 - Critical to identify good-risk as well as bad-risk patients at diagnosis to make optimal choice
 - Molecular diagnostics and cytogenetics critical
- Consider enrollment on clinical trial many available currently
- HLA type at diagnosis: transplant has the potential for cure, even in older adults
 - Consider referral for transplant consultation in CR1

Conclusions

- AML treatment increasingly dependent on underlying biology of the disease
- Crucial to obtain the proper diagnostic work-up to allow appropriate treatment selection
- Biologically targeted agents provide potential for significant improvements in outcome
- Allogeneic transplant in first remission recommended for high-risk groups
- CLINICAL TRIAL ENROLLMENT: PATH TO CURE!

