

Acute Leukemia Clinical Features (I)

- Acute presentation
- Blood
 - Anemia ———— weakness, tiredness
 - Low platelets ———— bleeding

 - Blast cells appear with time

Bone marrow

- Blast cells $\ge 20\%$
- Normal hematopoiesis suppressed or not detectable

Acute Leukemia Clinical Features (II)

- Extramedullary infiltrations
 - Spleen, liver
 - Lymph nodes (ALL)
 - Non-hematological tissues
 - Skin
 - Gums
 - CNS (ALL)
 - Other organs

Diagnostic Evaluation for Acute Leukemia

- CBC with differential
- Examination of peripheral blood smear
- Coagulation studies
- Blood chemistries
- Bone marrow aspiration and biopsy
 Leukemia blast:
 - Immunophenotype
 - Cytogenetics
 - Molecular genetics

Diagnostic Tests

- Immature cells: CD34
- Myeloid/monoctyic: MPO,CD13, CD33, CD15, CD14
- Immature lymphoid markers: TdT
- Pre B-cells TdT, CD10, CD19, CD22, CD20
- T-cells CD3, CD5, CD7, CD8, CD4, CD1a
- True biphenotypic acute leukemia (very rare)

ALL: Karyotype and Outcome

Decreased event-free or overall survival
t(9;22) (Ph+)
t(4;11)
Complex karyotype
(<u>></u> 5 abnormalities)
Low hyperdiploidy / near triploidy (Ho-Tr)
Improved event-free or overall survival
Hyperdiploidy
Del (9p)
Ph = Philadelphia chromosome
loorman AV, et al. <i>Blood</i> . 2007;109:3189-3197.

Bassan R, et al. Crit Rev Oncol Hematol. 2004;50:223-261.

Specific Recurrent Genetic Abnormalities

Gene	Outcome
Pre	-В
IKZF 1 (IKAROS)	Poor
RCLF2	Poor
MLL-v t(v;1)	Poor
T-c	ell
FBXW7	Good
NOTCH 1 (70%)	Good
NUP-ABL1 (6%)	Response to TKI

Principals of Adult ALL Protocols

(All include maintenance and CNS prophylaxis)

- <u>"BFM model" variants (CALGB, GMALL, ECOG)</u>
 - Induction: 2 phases, 8 drugs w/asparaginase
 - Consolidation
 - Complex multi-agent cycles
 - Asparaginase
 - Delayed re-induction
- Hyper-CVAD (alternate Parts A and B x 4)
 - More myelosuppressive drugs (inpatient)
 - No asparaginase
 - 6-MP only in maintenance

Adult ALL - Recent Large Front-line Clinical Trials						als
	Years of study	N	Age	Treatment	CR (%)	DFS (%)
GMALL 05/93 ¹	'93-'99	1163	35	BFM, HD-Ara-C, HD- MTX	87	35
CALGB 8811 ²	'88-'91	198	35	BFM, ↑Cy, ↑ASP	85	36
CALGB 19802 ³	'99-'01	163	41	BFM, ↑Cy, ↑DNR	78	35
MRC/ECOG- UKALLXII/E2993⁴	'93-'06	1913	15-64	BFM + HD-MTX ± SCT	90	OS 39
Hyper CVAD ⁷	'92-'00	288	40	A) Cy, DEX, ADR, VCR B) HD-MTX+HD-Ara-C	92	38
UCSF 8707⁵	'87-'98	84	27	VPDA + Intensified	93	52
LALA 94 ⁶	94-02	922	33	VPD + Cy, HD-Ara-C	84	37
L-2	00-06	78	33	HD-MITO+ HD-Ara-C	85	34

¹Gökbuget. *Blood*. 2001;98:802a; ²Larson. *Blood*.1995;85:2025-2037; ³Larson. *Ann Hematol*. 2004;83:Suppl 1:S127-S128; ⁴Goldstone. *Blood*. 2008;111:1827-1833; ⁵Linker. *J Clin Oncol*. 2002;20:2464-2471; ⁶Thomas. *J Clin Oncol*. 2004;22:4075-4086; ⁷Kantarjian. *Cancer*. 2004;101:2788.

Central Nervous System Prophylaxis Intrathecal methotrexate

- Systemic high-dose methotrexate
- Cranial irradiation
 - Probably not necessary with systemic high-dose treatment (methotrexate, Ara-C) and extended intrathecal methotrexate

Strategies to Improve Outcome of Adult ALL

- Transplantation
- Pediatric-inspired regimens
- Identify special subtypes for different treatment
 - Mature B cell (Burkitt's) ALL
 - Ph+ ALL
- New drugs

Bone Marrow Transplantation CIBMTR Recommendations

- CR 1
 - Allogeneic transplant in high-risk patients
 - Role in standard-risk patients unclear but not recommended
 - Autologous SCT: no benefit over chemotherapy
- CR 2
 - Allogeneic SCT

Hahn T, et al. Biol Blood Marrow Transplant. 2006;12:1-30.

	Allogeneic Stem Cell Transplantation MRC/ECOG UKALLXII/E2993 Trial Ph Negative ALL							
		Overall	survival	Rel	lapse	Non-rela	Non-relapse death	
		Donor	No donor	Donor	No donor	Donor	No donor	
	Hiah risk	41%	35%	37%	63%	36%	14%	
		NS		<i>P</i> <0.0005		<i>P</i> <0.05		
	Standard	62%	52%	24%	49%	20%	7%	
	risk	P<0.02		<i>P</i> <0.05 <i>P</i> <0.05		<0.05		
	High risk any of: Age \geq 35 years							
	WBC > 30,000/μL (<i>B Lineage</i>)						eage)	
	> 100,000/µL (<i>T Lineage</i>)						eage)	
Gold	istone. <i>Blood</i> . 200	8;11:1827.	Tin	ne to CF	R > 4 wee	eks		

Οι Adults vs.	Itcome Childhood	ALL
	CR	LFS
Adults	80%-90%	35-40%
Children (2-10 years)	>95%	80%
gl J Med. 2006;354:166-178.		

Adolescents and Young Adults Retrospective Comparison Pediatric vs. Adult Protocols

Study	Ν	Age	EFS @ 5 years	
			Pediatric	Adult
			protocol	protocol
US ¹	321	16-20	63%	34%
France ²	177	15-20	67%	41%
Netherlands ³	120	15-20	69%	34%
Sweden ⁴	59	15-20	75%	39%
UK⁵	128	15-17	65%	49%
Italy ⁶	248	14-18	83%	55%

1.Stock. *Blood.* 2008;112:646; 2.Boissel. *J Clin Oncol.* 2003;21:774; 3.de Bont. *Leukemia.* 2004;18:2032; 4.Hallböök. *Cancer.* 2006;107:1551; 5.Ramanujachar. *Pediatr Blood Cancer.* 2006;47:748; 6.Testi. *Blood.* 2005;104:1954a.

Age - A Complex Prognostic Factor

- Age "per se" children
 - Favorable cytogenetic
 - Better chemotherapy tolerance..... but....also in young adults
- Treatment adults
 - Less intense
 - Very few randomized trials
 - Lower compliance: physician and patient

Pediatric Treatment Approaches Principals

- More intense non-myelosuppressive agents
- Prolonged asparaginase (asparagine depletion)
- Delayed re-induction
- Early CNS prophylaxis (induction)
- Allo BMT only for very high-risk e.g., t(4:11), Ph+

Asparaginase Activity in ALL Summary

- Active as a single agent (35%-60% in relapsed children)
- In children several randomized trials showed that asparaginase <u>alone</u>, (with multiple agents) improved overall outcome
- Duration of post-remission asparaginase
 - Children long (5-6 cycles)
 - Adults short (0-2 cycles)

Unique Toxicities of Asparaginase

- · Hypersensitivity: allergic reactions
 - Neutralizing antibodies
 - "Silent hypersensitivity"
- Pancreatitis
- Hemostasis
 - Clotting: low antithrombin III, protein S
 - Bleeding: low clotting factors
- Liver dysfunction
 - Liver enzymes, hyperbilirubinemia
 - Low albumin
- Diabetes mellitus
- Neurological (lethargy, somnolence)

Stock and Douer, Leukemia & Lymphoma. 2011.

Asparaginase Intensification Pediatric and Pediatric - "Inspired" Regimens

	Asparaginaso	Upper	OS
	Asparayinase	age	@ 3-7 yrs
True Pediatric			
DFCI ¹	E. coli	50	74%
CALGB 10403	Pegaspargase 2,500	39	Pending
Pediatric "Inspired"			
PETHEMA ²	E. coli	30	69%
GRAALL-2003 ³	E. coli	45/60	64%/47%
USC ⁴	Pegaspargase 2,000	57	58%
Princess Margaret ⁵	E. coli (retrospective)	60	65%
Asparaginase Intensifica			
GMALL 7/03 ⁶	PEG 500/1000 → 2,000	55	67%
DeAngelo. ASH. 2007; ² Ribera. JCO. 2 Storring I. Br. I Haematol. 2009; ⁶ Goekb	008;Abst #587; ³ Huguet. <i>JCO</i> . 2009; ⁴	Douer. ASH. 2	012;Abst #1495;

Philadelphia Chromosome (Ph+) ALL

- t(9;22) bcr/abl translocation
- Precursor B-cell
- Incidence continuously increases with age (rare in children; ~50% in ages >55)
- Tyrosine kinase inhibitor activity
 - First generation imatinib (Gleevec®)
 - Second generations dasatinib (Sprycel[®]); nilotinib (Tasigna[®])
 - Third generation ponatinib (Iclusig[™])

Treatment of Ph+ ALL Summary

- TKI + concomitant multi-agent chemotherapy
 - Improved overall survival to 35-50%
 - Ideal chemotherapy?
- Allo HSCT
 - May improve outcome but not clear to what extent
 - In children no additional benefit after TKI + chemotherapy
- Second and third generation TKIs effective in imatinib-resistant or intolerant patient
- Changed outcome of Ph+ ALL [t(4;11) is now the worst ALL]

	B-ce	ALL .
Target	Agent	Single agent activity
CD 20	Rituximab ^{1,2}	Minimal (w/chemo may improve outcome in young CD20+)
CD 19	Blinatumomab ^{3,4}	CR 70% in molecular or overt relapsed/refractory
	19-28z CAR-targeted autologous T-cells ⁵	Yes
	Epratuzumab ⁶	Minimal
CD22	Inotuzumab ozogamycin ⁷	CR + CRp = ~50%
	Moxetumomab pasudotox (HA22) ⁸	CR 24%

Blinatumomab – Single Agent Refractory/Relapsed Pre-B ALL

Disease Status	Pts. #	Response	Outcome	
Molecular (MRD+) ¹	21 (5 Ph+)	MRD neg: 80%	RFS 78%	
Clinical ²	18	*CR 12 (67%) (all MRD neg)	Remission duration 7.8 Mo	
*MRD negative after two cycles				
opp, et al. <i>J Clin Oncol</i> . 2011;29;2 opp. ASH. 2011;Abst #252.	pp, et al. <i>J Clin Oncol.</i> 2011;29;2433. pp. ASH. 2011;Abst #252.			

MSKCC CAR T-cell Protocol Eligibility and Treatment Schema B-ALL in CR1 Relapsed B-ALL (14 patients) Adult patients (>18 years old) Leukapheresis Leukapheresis Patients B-ALL refractory, relapsed, MRD+, or in CR1 Expectant monitoring • Ph+, extramedullary disease, Re-induction CNS leukemia, and/or relapsed chemotherapy after prior allo-stem cell **CAR T-cell production** transplant are all eligible 19-28z CAR T-cell infusion **Monitoring T-cells** Post CAR T-cell treatment options include: 1. Allo-SCT 2. Different salvage therapy Davila, et al. ASH. 2013;Abst #69.

Adverse Events

- Fevers
- Hypotension
- Hypoxia
- Neurologic changes – Mental status change, obtundation, seizures
- Malaise
- ICU care

CAR T-cells Summary N=16 (overt ALL =8)

- CR=88%, CRm=76
- Median to CR =24 days
- 44% → allo-SCT (70% of eligible patients)
- Steroids
 - Effective at ameliorating the CRS
 - Cost of lymphotoxicity, resulting in eventual relapses
- Tocilizumab effective for CRS without lymphotoxicity
- Similar anti-leukemia efficacy in patients with only MRD as patients with morphologic residual leukemia
- To date, there have been no relapses post allo-SCT

Novel Targeted Agents				
Target	Drug			
Notch1 (T-ALL)	γ secretase inhibitors (GSI)			
MLL (q11.34)	DOT1L inhibitor, FLT3 inhibitors			
PP2A (Ph+ ALL)	FTY720 Fingolimod (MS)			
PNP (T-ALL)	Forodesine (Bcx-1777)			
NUP214-ABL1 T	Thyrosine kinase inhibitors			
mTOR	Everolimus, temsirolimus			
JAK	JAK inhibitors			

State-of-the-Art Therapy for Adult ALL A Changing Landscape

- Pediatric or "pediatric inspired" regimens
 - Young adult: upper age limit is unclear
- Treatment changes based on new stratification models
 - Philadelphia positive
 - Early MRD status
 - "BCR-ABL1 like" ALL (frequency in adults?)
 - Other mutations (RCLF2, IKZF.....)
- No !!! State-of-the art therapy relapse, older adults

State-of-the-Art Therapy for Adult ALL A Changing Landscape

Novel Agents

- Immunotherapy
 Monoclonal antibodies (CD19, 22, 20)
 - Cell therapy Chimeric antigen receptor (CAR)
- Small molecule targeting driver mutations (e.g., Notch1, Dotil, JAK2)

Allogeneic Hematopoietic Stem Cell Transplantation in CR1

• Only very high risk ALL?

Communication Touch Points Among Patients And Healthcare Providers

- Complex regimens optimal adherence
 - Patient compliance
 - Physician compliance
 - Time and effort commitment: travel, parking, work, life events, etc.

Reduce toxicities

- Teaching of side effects (e.g. asparaginase)
- Anticipating side effects
- Monitoring for early detection of side effects
- Communication with healthcare provider
 - Major cancer center
 - Local community oncologists

