

Established and Novel Agents for Myelodysplastic Syndromes

Mikkael A. Sekeres, MD, MS Professor of Medicine Director, Leukemia Program

HOA: MDS

- MDS Overview
- Disease Mechanisms
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease

HOA: MDS

- MDS Overview
- Disease Mechanisms
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease

MDS Overview: WHO Classification

2008 World Health Organization (WHO) Classification of Chronic Myeloid Neoplasms

Adapted from Vardiman et al. Blood 2009;114:937.

MDS Overview: IPSS

Calculation of prognostic score

Score	0	0.5	1.0	1.5	2.0
BM Blast % Cytogenetics Cytopenias	< 5 Good 0/1	5-10 Intermediate 2/3	Poor	11-20	21-29

Estimation of prognosis

ower Overall Score	IPSS Subgroup	Median Surviva (Years)	
0	Low	5.7	
0.5-1.0	Intermediate-1	3.5	
1.5-2.0	Intermediate-2	1.2	
<u>></u> 2.5	High	0.4	

Greenberg P, et. al. *Blood* 1997:89:2079-88.

MDS Overview: IPSS-R

VARIABLE	0	0.5	1	1.5	2	3	4
Cytogenetics	V. Good		Good		Intermediate	Poor	V. Poor
BM Blast %	≤2		>2-<5%	. Il	5-10%	>10%	
Hemoglobin	≥10		8-<10	<8			
Platelets	≥100	50-<100	<50				
ANC	≥0.8	<0.8					

IPSS-R Prognostic Risk Categories/Scores

RISK GROUP	Risk Score	Median Survival (Yrs)
Very Low	≤1.5	8.8
Low	>1.5-3	5.3
Intermediate	>3-4.5	3.0
High	>4.5-6	1.6
Very High	>6	0.8

Greenberg et al. Blood 2012;120:2454-65.

MDS Overview: Prognosis

MDS Prognosis Made Easy!!!

- Lower Risk
 - -RA, RARS
 - RCMD, RCUD
 - MDS-U, MDS del (5q)
 - IPSS Low, Int-1 (0-1.0); IPSS-R V. Low, Low

Higher Risk

- RAEB (-1, -2)
- IPSS Int-2, High (> 1.5); IPSS-R High, V. High

HOA: MDS

- MDS Overview
- Disease Mechanisms
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease

840

Clonal Hematopoiesis with Somatic Mutations Is a Common, Age-Related Condition Associated with Adverse Outcomes

Siddhartha Jaiswal, MD, PhD, Pierre Fontanillas, Jason Flannick, Alisa Manning, Peter Grauman, Brenton G. Mar, MD, PhD, R. Coleman Lindsley, MD, PhD, Craig Mermel, Noel Burtt, Alejandro Chavez, John M. Higgins, MD, Vladislav Moltchanov, Leena Kinnunen, Heikki Koistinen, Claes Ladenvall, Gad Getz, Ph.D., Adolfo Correa, Stacey Gabriel, PhD, Sekar Kathiresan, Heather Stringham, Michael Boehnke on behalf of GoT2D, Brian Henderson on behalf of SIGMA T2D, Mark McCarthy on behalf of T2D-GENES, Jaako Tuomilehto, Christopher A. Haiman, Sc.D., Leif Groop, Gil Atzmon, James Wilson, Donna S. Neuberg, ScD, David Altshuler and Benjamin L Ebert, MD, PhD

Age-related mutations associated with clonal hematopoietic expansion and malignancies

medicine

Mingchao Xie^{1,2,7}, Charles Lu^{1,7}, Jiayin Wang^{1,2,7}, Michael D McLellan¹, Kimberly J Johnson³, Michael C Wendl^{1,4,5}, Joshua F McMichael¹, Heather K Schmidt¹, Venkata Yellapantula^{1,2}, Christopher A Miller¹, Bradley A Ozenberger^{1,2}, John S Welch^{2,6}, Daniel C Link^{2,6}, Matthew J Walter^{2,6}, Elaine R Mardis^{1,2,4,6}, John F Dipersio^{2,6}, Feng Chen^{2,6}, Richard K Wilson^{1,2,4,6}, Timothy J Ley^{1,2,4,6} & Li Ding^{1,2,4,6}

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence

Giulio Genovese, Ph.D., Anna K. Kähler, Ph.D., Robert E. Handsaker, B.S.,
Johan Lindberg, Ph.D., Samuel A. Rose, B.S., Samuel F. Bakhoum, M.D., Ph.D.,
Kimberly Chambert, M.S., Eran Mick, B.S., Benjamin M. Neale, Ph.D.,
Menachem Fromer, Ph.D., Shaun M. Purcell, Ph.D., Oscar Svantesson, M.S.,
Mikael Landén, Ph.D., Martin Höglund, M.D., Ph.D., Sören Lehmann, M.D., Ph.D.,
Stacey B. Gabriel, Ph.D., Jennifer L. Moran, Ph.D., Eric S. Lander, Ph.D.,
Patrick F. Sullivan, M.D., Pamela Sklar, M.D., Ph.D., Henrik Grönberg, M.D., Ph.D.,
Christina M. Hultman, Ph.D., and Steven A. McCarroll, Ph.D.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Siddhartha Jaiswal, M.D., Ph.D., Pierre Fontanillas, Ph.D., Jason Flannick, Ph.D., Alisa Manning, Ph.D., Peter V. Grauman, B.A., Brenton G. Mar, M.D., Ph.D., R. Coleman Lindsley, M.D., Ph.D., Craig H. Mermel, M.D., Ph.D., Noel Burtt, B.S., Alejandro Chavez, M.D., Ph.D., John M. Higgins, M.D., Vladislav Moltchanov, Ph.D., Frank C. Kuo, M.D., Ph.D., Michael J. Kluk, M.D., Ph.D., Brian Henderson, M.D., Leena Kinnunen M.Sc., Heikki A. Koistinen, M.D., Ph.D., Claes Ladenvall, Ph.D., Gad Getz, Ph.D., Adolfo Correa, M.D., Ph.D., Benjamin F. Banahan, Ph.D., Stacey Gabriel, Ph.D., Sekar Kathiresan, M.D., Heather M. Stringham, Ph.D., and Mark I. McCarthy, M.D., for T2D-GENES; Michael Boehnke, Ph.D., for GoT2D; David Altshuler, M.D., Ph.D., for SIGMA T2D; and Jaakko Tuomilehto, M.D., Ph.D., Leristopher Haiman, Sc.D., Leif Groop, M.D., Ph.D., Gil Atzmon, Ph.D., and Benjamin L. Ebert, M.D., Ph.D.,*

Clonal evolution

Clonal hematopoiesis of indeterminate potential (CHIP)

Prevalence of Mutation by Age

Exome sequencing of peripheral blood from > 17,000 individuals

Jaiswal et al., NEJM 2014

DNMT3A is frequently mutated

Most subjects had only one mutation

CHIP increases the risk of hematologic malignancy

Clonal hematopoiesis is associated with reduced overall survival

Cox proportional hazards models which included age, gender, and diabetes status as covariates, with results for cohorts analyzed as a fixed-effects meta-analysis

Clonal hematopoiesis is associated with higher risk of heart attack and stroke

HR 2.0, 95% CI 1.2-3.4, p=0.018

HR 2.6, 95% CI 1.4 to 4.8, p=0.003

Regression models were adjusted for age, sex, BMI, lipids, blood pressure, and smoking

HOA: MDS

- MDS Overview
- Disease Mechanisms
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease

MDS: Lower-risk, Treatment Algorithm

Sekeres and Gerds Hematology 2014.

MDS: Lower-risk, Treatment Algorithm

Sekeres and Gerds Hematology 2014.

Efficacy and Safety of Lenalidomide Versus Placebo in RBC Transfusion-Dependent Patients With IPSS Low or Intermediate-1-Risk Myelodysplastic Syndromes Without del(5q) and Unresponsive or Refractory to Erythropoiesis-Stimulating Agents: Results From a Randomized Phase 3 Study (CC-5013-MDS-005)

<u>Valeria Santini</u>¹, Antonio Almeida², Aristoteles Giagounidis³, Stefanie Gröpper³, Anna Jonasova⁴, Norbert Vey⁵, Ghulam J. Mufti⁶, Rena Buckstein⁷, Moshe Mittelman⁸, Uwe Platzbecker⁹, Ofer Shpilberg¹⁰, Ron Ram⁸, Consuelo del Canizo¹¹, Norbert Gattermann¹², Keiya Ozawa¹³, Alberto Risueno¹⁴, Kyle J. MacBeth¹⁵, Jim Zhong¹⁶, Francis Séguy¹⁷, Albert Hoenekopp¹⁷, C.L. Beach¹⁶, Pierre Fenaux¹⁸

¹AOU Careggi, University of Florence, Firenze, Italy; ²Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal; ³Marien Hospital Düsseldorf, Düsseldorf, Germany; ⁴Charles University General Hospital 1st Department of Medicine, Prague, Czech Republic; ⁵Institut Paoli-Calmettes Centre Régional de Lutte Contre le Cancer, Marseille, France; ⁶King's College Hospital, London, UK; ⁷Sunnybrook Health Sciences Centre, Toronto, ON, Canada; ⁸Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ⁹Medical Clinic and Polyclinic I, University Hospital, Technical University Dresden, Dresden, Germany; ¹⁰Assuta Medical Center, Tel Aviv, Israel; ¹¹Hospital Universitario de Salamanca, Salamanca, Spain; ¹²Heinrich-Heine-Universität, Düsseldorf, Germany; ¹³The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; ¹⁴Celgene Institute for Translational Research Europe (CITRE), Seville, Spain; ¹⁵Celgene Corporation, San Francisco, CA, USA; ¹⁶Celgene Corporation, Summit, NJ, USA; ¹⁷Celgene International, Boudry, Switzerland; ¹⁸Service d'Hématologie Séniors, Hôpital Saint-Louis, Université Paris 7, Paris, France

MDS-005: Study Design

pRBC, packed red blood cell; SPM, secondary primary malignancy.

^aLEN 5 mg for patients with creatinine clearance 40–60 mL/min.

MDS-005: RBC-TI ≥ 8 Weeks

Significantly more LEN patients achieved RBC-TI ≥ 8 weeks versus placebo (*P* < 0.001)

MDS-005: Time to RBC-TI ≥ 8 Weeks

MDS-005: Duration of RBC-TI ≥ 8 Weeks

CI, confidence interval.

Luspatercept (ACE-536) Increases Hemoglobin and Reduces Transfusion Burden in Patients with Low or Intermediate-1 Risk Myelodysplastic Syndromes (MDS): Preliminary Results from a Phase 2 Study

Uwe Platzbecker, MD

U Platzbecker¹, U Germing², A Giagounidis³, K Goetze⁴, P Kiewe⁵, K Mayer⁶, O Ottman⁷, M Radsak⁸, T Wolff⁹, D Haase¹⁰, M Hankin¹¹, D Wilson¹¹, A Laadem¹², M Sherman¹¹ and K Attie¹¹

¹Universitätsklinikum Carl Gustav Carus, Dresden; ²Universitätsklinikum Düsseldorf; ³Marien Hospital Düsseldorf; ⁴Technical University of Munich; ⁵Onkologischer Schwerpunkt am Oskar-Helene-Heim, Berlin; ⁶Universitätsklinikum Bonn; ⁷Klinikum der J.W. Goethe-Universität Frankfurt; ⁸University Medical Center - Johannes Gutenberg-Universität, Mainz; ⁹OncoResearch Lerchenfeld UG, Hamburg; ¹⁰Department of Hematology and Medical Oncology, University Medicine of Göttingen, Germany; ¹¹Acceleron Pharma, Cambridge, MA; ¹²Celgene Corporation, Summit, NJ, USA

Study supported by Acceleron and Celgene

Luspatercept PACE-MDS Study Overview

- Phase 2, multicenter, open-label, dose-finding study in IPSS low/int-1 MDS
- Eligibility criteria: EPO >500 U/L or nonresponsive/refractory to ESA; no prior azacitidine or decitabine; no current lenalidomide, ESA, G-CSF
- Primary efficacy endpoints
 - Low Transfusion Burden (LTB, <4U RBC/8 weeks, Hgb <10 g/dL): Hemoglobin increase of ≥ 1.5 g/dL for ≥ 2 weeks
 - High Transfusion Burden (HTB, ≥4U RBC/8 weeks): Reduction of ≥4U or ≥50% units transfused over 8 weeks
- Luspatercept administered SC every 3 weeks for 3 months

Baseline Characteristics

All Patients	N = 26
Age, yr, median (range)	71 (27-88)
Sex, males (%)	13 (50%)
Prior ESA treatment, n (%)	14 (54%)
Prior lenalidomide treatment, n (%)	5 (19%)
Low Transfusion Burden (LTB)	N = 7 (27%)
Hemoglobin, g/dL, median (range)	9.1 (8.3-9.7)
Units RBC/8 weeks, median (range)	0 (0-2)
High Transfusion Burden (HTB)	N = 19 (73%)
Units RBC/8 weeks, median (range)	6 (4-13)

Efficacy Summary: HI-E Response Rate

Patient Subgroup	0.125-0.5 mg/kg (N=9) n (%)	0.75-1.75 mg/kg (N=17) n (%)
LTB patients (N=7)	0/2 (0%)	2/5 (40%)
HTB patients (N=19)	2/7 (29%)	5/12 (42%)
All patients (N=26)	2/9 (22%)	7/17 (41%)

<u>HI-E (IWG)</u>:

LTB: Hemoglobin increase ≥ 1.5 g/dL for ≥ 8 weeks

HTB: Reduction of \geq 4 units RBCs transfused over 8 weeks

HI-E, hematologic improvement-erythroidIWG, International Working GroupLTB, low transfusion burden; HTB, high transfusion burden

Data as of 03 Oct 2014

An Open-Label, Phase 2, Dose-Finding Study of Sotatercept (ACE-011) in Patients With Low- or Intermediate (Int)-1-Risk Myelodysplastic Syndromes (MDS) or Non-Proliferative Chronic Myelomonocytic Leukemia (CMML) and Anemia Requiring Transfusion Rami Komrokji¹, Guillermo Garcia-Manero², Lionel Ades³, Abderrahmane Laadem⁴, Bond Vo⁴, Thomas Prebet⁵, Aspasia Stamatoullas⁶, Thomas Boyd⁷, Jacques Delaunay⁸, David P. Steensma⁹, Mikkael A. Sekeres¹⁰, Odile Beyne-Rauzy¹¹, Jun Zou⁴, Kenneth M. Attie¹², Matthew L. Sherman¹², Pierre Fenaux¹³, Alan F. List¹⁴

Part 2: Recommended dose (as determined by steering committee) in Part 1 carried over into Part 2 with enrollment of 15 additional patients

Komrokji et al. 3251a

An Open-Label, Phase 2, Dose-Finding Study of Sotatercept (ACE-011) in Patients With Low- or Intermediate (Int)-1-Risk Myelodysplastic Syndromes (MDS) or Non-Proliferative Chronic Myelomonocytic Leukemia (CMML) and Anemia Requiring Transfusion Rami Komrokji¹, Guillermo Garcia-Manero², Lionel Ades³, Abderrahmane Laadem⁴, Bond Vo⁴, Thomas Prebet⁵, Aspasia Stamatoullas⁶, Thomas Boyd⁷, Jacques Delaunay⁸, David P. Steensma⁹, Mikkael A. Sekeres¹⁰, Odile Beyne-Rauzy¹¹, Jun Zou⁴, Kenneth M. Attie¹², Matthew L. Sherman¹², Pierre Fenaux¹³, Alan F. List¹⁴

Table 2. Transfusion Response Among HTB Patients					
	Sotatercept dose group				Overall
	0.1 mg/kg (n = 7)	0.3 mg/kg (n = 6)	0.5 mg/kg (n = 17)	1.0 mg/kg (n = 15)	(N = 45)
Transfusion burden reduction $\ge 4 \text{ RBC units}/56 \text{ days, n (%)}$	0	4 (67)	7 (41)	8 (53)	19 (42)
Duration of longest response, median (range), days	NA	68 (62–144)	150 (83–345+)	88 (62–154+)	106 (62–345+)
RBC-TI \ge 56 days, n (%)	0	1 (17)	2 (12)	2 (13)	5 (11)
HTB, high transfusion burden; NA, not application	able; RBC, red b	lood cell; RBC-	TI, RBC transfus	ion independend	e.

Komrokji et al. 3251a

MDS: Lower-risk, Treatment Algorithm

Sekeres and Gerds Hematology 2014.

Lower-risk MDS: TPO Agonists

Giagounides et al. Cancer 2014;120:1838.

Lower-risk MDS: TPO Agonists

	Baseline platelets < 20x10 ⁹ /L		Baseline platelets <u>></u> 20x10 ⁹ /L	
	Placebo (N = 43)	Romiplostim (N = 87)	Placebo (N = 40)	Romiplostim (N = 80)
CSBE (rate/100 pt-yr)	501.2	514.9	226.4	79.5
	RR = 1.03	3, p = 0.827	RR = 0.35,	p<0.0001
PTE (rate/100 pt-yr)	1778.6	1250.5	179.8	251.8
	RR = 0.71, p<0.0001		RR = 1.38,	p = 0.1479

Giagounides et al. Cancer 2014;120:1838.

Lower-risk MDS: TPO Agonists

58 weeks of follow-up

	Romiplostim	Placebo	HR	95% CI
Deaths	17.9% (30)	20.7% (17)	0.86	0.47, 1.56
AML	6.0% (10)	4.9% (4)	1.20	0.38, 3.84
AML-free survival	19.6% (33)	23.2% (19)	0.85	0.48, 1.50

1.0

Giagounides et al. Cancer 2014;120:1838.

HOA: MDS

- MDS Overview
- Disease Mechanisms
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease

MDS: Higher-risk, Treatment Algorithm

Cleveland Clinic Taussig Cancer Institute

Sekeres and Cutler Blood 2014;123:829.

MDS: Higher-risk, Treatment Algorithm

Higher-risk MDS: AZA

Fenaux P, et al. Lancet Oncology 2009;10:223-232.

Higher-risk MDS: AZA

Fenaux P, et al. Lancet Oncology 2009;10:223-232.

Higher-risk MDS: DAC

Lubbert et al. JCO 2011;29:1987.

Higher-risk MDS: DAC

Lubbert et al. JCO 2011;29:1987.

First clinical results of a randomized phase 2 study of SGI-110, a novel subcutaneous hypomethylating agent, in 102 patients with Intermediate or High Risk MDS or CMML

On Behalf of the SGI-110 Investigative Team

<u>Guillermo Garcia Manero</u>¹, Ellen Ritchie², Katherine Walsh³, Michael Savona⁴, Patricia Kropf ⁵, Casey O'Connell⁶, Raoul Tibes⁷, Naval Daver¹, Elias Jabbour¹, Scott Lunin⁸, Todd Rosenblat⁹, Karen Yee¹⁰, Wendy Stock¹¹, Elizabeth Griffiths¹², Joseph Mace¹³, Nikola Podoltsev¹⁴, Jesus Berdeja⁴, Jean-Pierre Issa¹⁵, Woonbok Chung¹⁵, Sue Naim¹⁶, Pietro Taverna¹⁶, Yong Hao¹⁶, Mohammad Azab¹⁶, Hagop Kantarjian¹, Gail Roboz²

¹MD Anderson Cancer Center, Houston, TX, ²Weill Cornell Medical College, New York, NY, ³The Ohio State University, Columbus, OH, ⁴Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, ⁵ Fox Chase Cancer Center, Philadelphia, PA, ⁶USC Keck School of Medicine, University of Southern California, Los Angeles, CA, ⁷Mayo Clinic Arizona, Scottsdale, AZ, ⁸ Florida Cancer Specialist, Englewood, FL, ⁹New York Presbyterian/Columbia University Medical Center, New York, NY, ¹⁰ Princess Margaret Cancer Center, Toronto, Canada, ¹¹University of Chicago Medical Center, Chicago, IL, ¹²Roswell Park Cancer Institute, Buffalo, NY, ¹³Florida Cancer Specialists, St Petersburg, FL, ¹⁴Yale University School of Medicine, New Haven, CT, ¹⁵Fels Institute, Temple University, Philadelphia, PA,¹⁶Astex Pharmaceuticals Inc., Dublin, CA.

Randomized Phase 2 Study of SGI-110 in MDS/CMML¹

- Primary Endpoint: Overall Response Rate (CR, PR, mCR, HI)
- Secondary Endpoints: Transfusion independence, LINE-1 demethylation time to AML, overall survival ¹ Data presented with data cutoff end of July 2014

SGI-110 – American Society of Hematology 2014

SGI-110: Patients Characteristics By MDS Status

Patient Characteristics	Prev. Treated (n=53)	Tx Naïve (n=49)
Median Age, (range)	72.5 (52-89)	71.7 (18-85)
Gender, M n (%)	32 (60)	35 (71)
ECOG PS %: 0/1/2	21/58/21	27/67/6
Disease Category (IPSS) n (%) Int-1 Int-2 High Risk CMML	4 (8) 13(25) 24 (45) 10 (19)	23 (47) 5 (10) 9 (18) 12 (24)
Median BM Blast % (range)	8 (0-19)	3 (0-14)
Median Neutrophils (10 ⁹ /L)	0.81	1.64
Median Platelets (10 ⁹ /L)	37	62.5
Median Hb (g/dL)	9.30	9.10
Prior decitabine or azacitidine n(%)	51 (96)	1 (2) ¹
Randomized Dose (n) 60 mg/m2 90 mg/m2	26 27	27 22

SGI-110 – American Society of Hematology 2014

¹Patient received only 1 prior cycle of HMA

SGI-110: Best Response¹ By MDS Status

Response Category ¹	Prev Treated (n=53)	Tx Naïve (n=49)
	Response rate n (%)	Response rate n (%)
CR	2 (3.8)	7 (14.3)
mCR	9 (17.0)	3 (6.1)
HI	1 (1.9)	9 (18.4)
CR+mCR	11 (20.8)	10 (20.4)
Overall Response Rate	12 (22.7)	19 (38.8)

¹International Working Group 2006 MDS Response Criteria

Higher-risk MDS

What happens when we add drugs together?

A Randomized Phase II Study of Azacitidine Combined with Lenalidomide or with Vorinostat vs. Azacitidine Monotherapy in Higher-Risk Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML): North American Intergroup Study SWOG S1117 [LBA – 5]

Mikkael A. Sekeres, MD, MS, Megan Othus, PhD, Alan F. List, MD, Olatoyosi Odenike, MD, Richard M. Stone, MD., Steven D. Gore, MD, Mark R. Litzow, MD, Rena Buckstein, MD, Mario R. Velasco, MD, Rakesh Gaur, MD, MPH, Ehab Atallah, MD, Eyal C. Attar, MD, Frederick R. Appelbaum, MD, Harry P. Erba, MD, PhD

SWOG Alliance ECOG NCIC

North American Intergroup Randomized Phase 2 MDS Study S1117: Study Design

Groups: SWOG, ECOG, Alliance, NCIC

Total Sample Size: 276

Primary Objective: 20% improvement of ORR (CR/PR/HI) based on 2006 IWG Criteria

Secondary Objectives: OS,

Power 81%, alpha 0.05 for each combo arm vs. AZA

03/2012 - 06/2014

Sekeres et al. ASH 2014: LBA - 5

North American Intergroup Randomized Phase 2 MDS Study S1117: Grade <u>>3 Toxicities</u>

Toxicity Variable	AZA	AZA+LEN (P-value vs. AZA)	AZA+VOR (P-value vs. AZA)	Total n=260
Febrile neutropenia (n)	10	13 (0.66)	13 (0.51)	36
GI (n)	4	11 (0.10)	23 (<0.001)	38
Rash (n)	2	12 (0.01)	1 (1)	15
Off Tx due to Toxicity/Side Effect/Complication	9%	23% (.04)	24% (.03)	19%
Non-protocol defined dose modifications	23%	41% (.01)	36% (.05)	33%

North American Intergroup Randomized Phase 2 MDS Study S1117: Response

Response Variable	AZA	AZA+LEN (P-value vs. AZA)	AZA+VOR (P-value vs. AZA)	Total n=260
Median Tx Duration (Wks)	25	24	20	23
Overall Response Rate (%)	37	39 (1.0)	24 (.07)	33
CR/PR/HI (%)	24/0/13	18/1/19 (.66)	15/1/7 (.12)	19/1/13
CMML ORR (%)	33 (n=15)	59 (.15) (n=19)	13 (.41) (n=16)	34
Relapse-free Survival (median)	7 months	8 months (.45)	11 months (.29)	7 months
Relapse-free survival, on Tx >6 months (median)	7 months	7.5 months (.74)	13 months (.11)	8.5 months

Sekeres et al. ASH 2014: LBA - 5

North American Intergroup Randomized Phase 2 MDS Study S1117: Relapse-free Survival (II) All Responders on Tx >6 Months

Relapse-free survival for patients on therapy > 6 months

Sekeres et al. ASH 2014: LBA - 5

North American Intergroup Randomized Phase 2 MDS Study S1117: Conclusions ()

No differences in ORR comparing AZA + LEN or AZA + VOR to AZA monotherapy.

Some subgroups may have benefitted from AZA-based combinations.

Signal of RFS improvement with AZA + VOR; EFS/OS data maturing and analyses by cytogenetic subgroups pending.

Overall Survival and Subgroup Analysis from a Randomized Phase III Study of **Intravenous Rigosertib vs Best Supportive Care in Patients with Higher-risk Myelodysplastic Syndrome After Failure** of Hypomethylating Agents (ONTIME Trial of ON 01910)

G. Garcia-Manero, P. Fenaux, A. Al-Kali, M. R. Baer, M. Sekeres, G. Roboz, G. Gaidano,
B. Scott, P. Greenberg, U. Platzbecker, D. P. Steensma, S. Kambhampati, L. Godley,
R. Collins, E. Atallah, F. Wilhelm, I. Darnis-Wilhelm, N. Azarnia, M. Maniar,
L. R. Silverman, for the ONTIME Investigators

ONTIME Trial: Study Design

- Phase III, randomized, controlled, safety & efficacy study comparing rigosertib + BSC* vs BSC* alone (2:1)
 - Adult pts who had relapsed after, failed to respond to, or progressed during HMA therapy
 - 299 pts enrolled at 87 sites in US and Europe
 - Rigosertib administered as 1800 mg/24 hr for 72 hrs as a continuous IV ambulatory infusion
- Pts stratified by bone marrow blast count (5-19% vs 20-30%)
 - Additional information on the relationship between OS and BMBL is available in Poster #3259
- Primary endpoint = overall survival
- Analysis based on 242 events (deaths; ≥ 80% maturity)
- Median follow-up of >18 months

*BSC=Best supportive care: RBC & platelets; growth factors; hydroxyurea to manage blastic crises when pts transition to leukemia; pts on the BSC arm also allowed low-dose cytarabine, as medically justified.

ONTIME Trial: Primary Efficacy Results - ITT

	Rigosertib N = 199	BSC N = 100	
Number (%) of deaths	161 (81%)	81 (81%)	
Median follow-up (months)	17.6	19.5	
Median survival (months)	8.2	5.9	
95% CI	6.0 - 10.1	4.1 - 9.3	
Stratified HR (rigosertib/BSC)	0.87		
95% CI	0.67 - 1.14		
Stratified log-rank p-value*	0.33		

* Stratification factor: bone marrow blast at randomization (5-19% versus 20-30%)

ONTIME Trial: Median Overall Survival for Pts with Primary HMA Failure - Blinded, Centralized Assessment

Per Prebet 2011, "Primary HMA Failure" was defined as either no response to or progression during HMA therapy

ONTIME Trial: Conclusions

- Primary endpoint of OS did not reach statistical significance in the ITT population
 - 2.3-month improvement in median OS in the ITT population
- Rigosertib treatment-related improvement in OS was noted in the following well-balanced subgroups:
 - Primary HMA failure (64% of pts: HR = 0.69; p = 0.04)
 - IPSS-R Very High Risk (45% of pts: HR = 0.56; p = 0.005)
 - Cytogenetic criteria also important prognostic factors
 - Monosomy 7 (HR = 0.24; p = 0.003)
 - Trisomy 8 (HR = 0.34; p = 0.035)
- Continuous IV infusion with rigosertib had a favorable safety profile in this population of elderly pts with HR MDS

MDS: Conclusions

- The molecular landscape of MDS is becoming much more complex, and is being folded into clinical prognostic schemes.
- Therapy for lower-risk disease addresses specific cytopenias, particularly anemia.
- Standard therapy for higher-risk disease is HMA monotherapy; more data coming with combos.
- The next regulatory frontier is in the relapsed/refractory setting for lower- and higher-risk disease.

Thanks!

Cleveland Clinic Leukemia/MDS Program

Jaroslaw Maciejewski, MD, PhD Hideki Makishima, MD, PhD Sudipto Mukherjee, MD, PhD Yogen Saunthararajah, MD Hetty Carraway, MD, MBA Anjali Advani, MD Matt Kalaycio, MD **Ronald Sobecks, MD** Hien Duong, MD **Betty Hamilton, MD** Aaron Gerds, MD, MS Aziz Nazha, MD Moshe Ornstein, MD David Seastone, DO, PhD John Desamito, MD **Tracy Cinalli, RN** Kristen Colaluca, RN Gina Rupp, RN Mary Lynn Rush, RN **Monique Biggins, RN Cheryl Redmond, RN**

Samjhana Bogati, RN Camille Urban, RN, NP Nina D'ambrosio, RN, NP Barb Tripp, RN, NP Alicia Bitterice, RN, NP Ashley Woltman, RN **Eric Parsons, RN Becky Habecker, BA** Sean Hobson, BA Chad Lucas, BA **Cassandra Fincher, BA** Jaime Wetzel, MS Katarina Paulic, BA Arian Smith, BA Chris Estling, BA **Christopher Estling, BA** Laura Bailey, BA Ziad Chartouni, BA **Caitlin Swann, PharmD** Cassandra Zimmerman, BA **Connie Cheng, PharmD**

And Our Patients!!!